首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于动态粒子群优化的网格任务调度算法*   总被引:1,自引:1,他引:0  
提出了一种基于动态粒子群优化的网格任务调度算法。设计了网格任务调度问题的数学模型,给出了自适应变异的动态粒子群优化算法的框架,引入了自适应学习因子和自适应变异策略,从而使算法具有动态自适应性,能够较容易地跳出局部最优。实验结果表明,本文算法能有效地解决异构网格任务调度问题,具有较好的应用价值。  相似文献   

2.
可信禁忌粒子群优化网格任务调度算法   总被引:4,自引:1,他引:4  
网格任务调度是典型的NP(Non-Polynomial)难题,基于粒子群优化智能算法,提出一种新的任务调度算法,目标是使所有任务整体完成时间最小。算法首先随机产生一群粒子,然后对粒子的位置和速度不断迭代,获得可以接受的任务调度方案,并从中选择一组信任度最高的作为较优解,再利用禁忌搜索算法由较优解获得最优解。仿真实验结果表明,与遗传算法相比更适合于求解规模较大的网格任务调度问题。  相似文献   

3.
研究网格计算中任务调度优化问题,由于网格环境具有动态性、异构性等特点,导致传统网格任务调度算法的调度效率,网格负载严重不平衡.结合粒子群的快速性和混沌的遍历性优点,提出了一种基于混沌粒子群优化算法(CPSO)的网格任务调度优化方法.首先建立网格任务调度问题的数学模型,然后采用CPSO对其进行求解,通过混沌变量产生优化粒子群,加快网格任务调度求解速度.仿真结果表明,CPSO提高了资源调度效率,网格负载更加均衡,具有较好的应用价值.  相似文献   

4.
欧阳  孙元姝 《计算机工程》2011,37(21):146-148
针对网格任务调度问题,提出一种基于改进混合蛙跳算法的网格任务调度策略。通过引入遗传算子增加对局部极值的扰动,以避免陷入局部最优,同时借鉴粒子群优化算法中粒子飞行经验,对青蛙移动策略进行优化。实验结果表明,该策略高效合理,能够缩减执行任务的时间跨度,并提高最优解的质量。  相似文献   

5.
网格任务分配是一个NP难问题,结合微粒群优化(Particle Swarm Optimization,PSO)算法,和网格自身的特性,提出了基于网格的混合微粒群算法。算法对问题的解空间进行变换、重定义,使之更加符合PSO算法的求解环境,实现了网格资源的优化分配。与离散微粒群(DPSO)算法和遗传算法进行了仿真比较,结果表明,新的PSO算法具有较好的性能。  相似文献   

6.
提出一种基于智能的网格资源分配和任务调度算法,由于网格资源调度是个离散问题,所以采用基于惯性权重的离散粒子群算法,针对离散粒子群算法在后期容易陷入局部最优的缺陷,将其与禁忌搜索算法相结合,在算法的前期采用离散粒子群算法进行搜索,在后期采用禁忌搜索算法进行局部搜索。并利用网格模拟工具Gridsim Toolkit开发一个网格模拟系统进行实验。实验结果表明,该算法具有较高的寻优能力。  相似文献   

7.
刘小华 《控制与决策》2011,26(4):501-506
针对大规模定制模式下的供应链调度优化问题,首先将供应链调度优化问题进行数学规划建模,并通过一些定义将模型映射为有向图,以便于智能搜索算法的应用;然后,结合遗传算法全局搜索能力强与粒子群算法收敛速度快的特点,进行优势互补,构造了一种混合算法;最后,运用混合算法对供应链优化调度问题模型进行求解.通过与其他算法进行比较,所得结果表明混合算法有着更好的整体性能.  相似文献   

8.
提出基于粒子群优化的多处理机调度算法,采用列表调度,同时把粒子群的矢量表达方式转换为基于调度优先级的模型。调度结果显示能提高全局搜索能力,加快进化速度,优于模拟退火等启发式算法结果。  相似文献   

9.
任务调度是云计算系统可靠运行的关键,云计算环境中要处理的任务量巨大,考虑到云计算任务调度和QoS的优化问题,提出一种混合粒子群优化算法用于云任务调度。算法中引入遗传算法的交叉和变异思想,并结合随迭代次数变化的变异指数,保证种群进化初期具有较高的全局搜索能力,避免出现\"早熟\",同时将爬山算法引入粒子群算法,改善局部搜索能力。实验结果显示该算法具有很好的寻优能力,是一种有效的云计算任务调度算法。  相似文献   

10.
在多目标进化算法中,近年的研究倾向于基于Pareto支配的最优化方法.针对传统的基于Pareto支配在排序效率上过低的问题,提出了一种基于网格排序的框架,利用网格同时表征收敛性与分布性的特性,结合粒子群算法,提出了一种基于网格排序的多目标粒子群优化算法.与个体两两进行比较的基于Pareto支配的策略不同,基于网格排序的机制融合了整个解空间中个体的占优信息,并利用占优信息进行排序,从而高效地得到个体在种群中的优劣关系;结合粒子到近似最优边界的距离,进一步加强了粒子在解空间中优劣关系的判别.对比实验分析表明:所提算法不论是在收敛性还是分布性上都具有较好的优势.在此基础上,讨论了网格划分数对算法效率的影响,从另一方面验证了算法的效率.  相似文献   

11.
一种求解异构DAG调度问题的置换蚁群   总被引:1,自引:1,他引:0  
邓蓉  陈闳中  王博  王小明  李灿 《计算机科学》2010,37(12):193-196
减少分布式程序的执行时间,是网格调度系统需要解决的重要问题。因分布式程序常建模为DAG图,故该问题又称异构DAG调度问题。提出的置换调度蚁群PSACS(Permutation Scheduling Ant Colony System)将DAG调度方案表示为任务置换列表,使用标准蚁群搜索技术探索解空间。实验表明,该算法明显优于遗传算法和粒子群算法,能够一次求出大部分(65%)同构DAG调度问题的最优解并获得非常好的异构DAG调度方案。  相似文献   

12.
This paper presents a new particle swarm optimization (PSO) for the open shop scheduling problem. Compared with the original PSO, we modified the particle position representation using priorities, and the particle movement using an insert operator. We also implemented a modified parameterized active schedule generation algorithm (mP-ASG) to decode a particle position into a schedule. In mP-ASG, we can reduce or increase the search area between non-delay schedules and active schedules by controlling the maximum delay time allowed. Furthermore, we hybridized our PSO with beam search. The computational results show that our PSO found many new best solutions of the unsolved problems.  相似文献   

13.
In this paper, a rotary chaotic particle swarm optimization (RCPSO) algorithm is presented to solve trustworthy scheduling of a grid workflow. In general, the grid workflow scheduling is a complex optimization problem which requires considering various scheduling criteria so as to meet a wide range of QoS requirements from users. Traditional researches into grid workflow scheduling mainly focus on the optimization constrained by time and cost. The key requirements for reliability, availability and security are not considered adequately. The main contribution of this study is to propose a new approach for trustworthy workflow scheduling in a large-scale grid with rich service resources, and present the RCPSO algorithm to optimize the scheduling performance in a multi-dimensional complex space. Experiments were done in two grid applications with at most 120 candidate services supplied to each task of various workflows. The results show better performance of the RCPSO in solving trustworthy scheduling of grid workflow problems as compared to GA, ACO and other recent variants of PSO.  相似文献   

14.
刘勇  梁彦  潘泉  程咏梅 《控制与决策》2009,24(6):864-868
微粒群算法的全局搜索性能容易受到局部极值点的影响,对此,提出一种基于栅格的动态粒子数微粒群算法(GB-DPPPSO).通过设计栅格信息更新策略、粒子产生策略和粒子消灭策略,可以根据种群搜索情况动态控制粒子数变化,以保持种群多样性,提高全局搜索性能,通过对4个典型数学验证函数的仿真实验,表明了该算法相对于DPPPSO)在全局搜索成功率和搜索效率两方面均有明显改进.  相似文献   

15.
Particle swarm optimization is applied to determine the optimal hourly schedule of power generation in a hydrothermal power system. A multi-reservoir cascaded hydroelectric system with a nonlinear relationship between water discharge rate, net head and power generation is considered. The water transport delay between connected reservoirs is taken into account. In the present work, the effects of valve point loading in the fuel cost function of the thermal plants are also taken into consideration. The developed algorithm is illustrated for a test system consisting of four hydro plants and three thermal plants. Cost characteristics of individual thermal units are considered. The test results are compared with those obtained using evolutionary programming and simulated annealing technique. It is found that the convergence characteristic is excellent and the results obtained by the proposed method are superior in terms of fuel cost and computation time.  相似文献   

16.
为解决定制物流调度优化问题,给出一种基于微粒群优化的物流调度算法。设计了定制物流调度问题的数学模型,给出了动态微粒群优化算法的框架,并在仿真环境下进行了实验验证。实验结果表明,该算法能够有效地解决定制物流调度问题,具有较好的应用价值。  相似文献   

17.
微粒群优化算法在车间调度中的研究与应用   总被引:1,自引:0,他引:1  
在对某印染企业的生产状况进行了深入调研和分析的基础上,对流水车间调度、混合流水车间调度进行了对比,同时对微粒群算法进行了深入研究,并根据实际情况对算法进行了部分改动和改进,使之能适用于离散的生产调度问题.最后将改进后的微粒群算法应用到印染企业的车间调度中,同时实现了甘特图的动态生成.研究结果可直接应用于企业流水车间调度和作业车间调度,具有一定的实际应用价值.  相似文献   

18.
丁舒阳  黎冰  侍洪波 《计算机科学》2018,45(4):233-239, 256
柔性作业车间调度问题(Flexible Job-shop Scheduling Problem,FJSP)是经典作业车间调度问题的一个扩展,前者更接近于实际生产。以最小化最大完工时间为目标,提出了一种改进的离散粒子群优化算法。传统粒子群优化算法一般适用于优化连续模型问题,FJSP作为复杂度比较高的组合优化问题,是一种典型的离散模型。提出的算法采用机器负荷平衡机制初始化粒子种群,在粒子的更新过程中引入了3个操作算子来更新粒子的工序排序部分和机器分配部分,这3个算子分别为基于工序排序或机器分配的变异、与个体最优位置之间进行工序先后顺序保留的交叉(POX)操作、与全局最优位置进行随机点保存的交叉(RPX)操作。先后执行以上3个算子以完成粒子的一次更新。这种操作能够使种群较快地收敛于最优解。对标准测试案例进行实验的结果表明,所提算法对解决FJSP具有有效性,并且能够快速地搜索到近似最优解;与其他同类算法相比,所提算法在求解效果和收敛速度上均具有优越性。  相似文献   

19.
Particle swarm optimization (PSO) is a bio-inspired optimization strategy founded on the movement of particles within swarms. PSO can be encoded in a few lines in most programming languages, it uses only elementary mathematical operations, and it is not costly as regards memory demand and running time. This paper discusses the application of PSO to rules discovery in fuzzy classifier systems (FCSs) instead of the classical genetic approach and it proposes a new strategy, Knowledge Acquisition with Rules as Particles (KARP). In KARP approach every rule is encoded as a particle that moves in the space in order to cooperate in obtaining high quality rule bases and in this way, improving the knowledge and performance of the FCS. The proposed swarm-based strategy is evaluated in a well-known problem of practical importance nowadays where the integration of fuzzy systems is increasingly emerging due to the inherent uncertainty and dynamism of the environment: scheduling in grid distributed computational infrastructures. Simulation results are compared to those of classical genetic learning for fuzzy classifier systems and the greater accuracy and convergence speed of classifier discovery systems using KARP is shown.  相似文献   

20.
Flexible job-shop scheduling problem (FJSP) is an extension of the classical job-shop scheduling problem. Although the traditional optimization algorithms could obtain preferable results in solving the mono-objective FJSP. However, they are very difficult to solve multi-objective FJSP very well. In this paper, a particle swarm optimization (PSO) algorithm and a tabu search (TS) algorithm are combined to solve the multi-objective FJSP with several conflicting and incommensurable objectives. PSO which integrates local search and global search scheme possesses high search efficiency. And, TS is a meta-heuristic which is designed for finding a near optimal solution of combinatorial optimization problems. Through reasonably hybridizing the two optimization algorithms, an effective hybrid approach for the multi-objective FJSP has been proposed. The computational results have proved that the proposed hybrid algorithm is an efficient and effective approach to solve the multi-objective FJSP, especially for the problems on a large scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号