首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Abstract— The moving‐picture response time (MPRT) for measuring liquid‐crystal‐display (LCD) motion blur was studied by several organizations in 2001. To determine the LCD motion blur that humans perceive, subjective evaluation experiments using the method of adjustment was conducted to find a strong correlation between perceived motion blur and extended blurred edge time (EBET) of the MPRT measurements. MPRT thus clearly indicates the degree of which humans perceive motion blur.  相似文献   

2.
Abstract— In this paper, several methods to characterize motion blur on liquid‐crystal displays are reviewed. Based on the assumptions of smooth‐pursuit eye tracking and one‐frame temporal luminance integration, a simple algorithm has been proposed to calculate the normalized blurred edge width (N‐BEW) and motion‐picture response time (MPRT) with a one‐frame‐time moving‐window function to LC temporal step response curves. A custom measurement system with a fast‐eye‐sensitivity‐compensated photodiode has been developed to characterize motion blur based on LC response curves (LCRCs). MPRT values obtained by using the algorithm mentioned above and those from the smooth‐pursuit‐camera methods agree. Perception experiments were conducted to validate the correspondence between the simulated results and actual perceived images by the human eyes. In addition, the insufficiency of MPRT to evaluate motion blur on impulse‐type light‐generation LCDs, by analyzing the measurement results of a scanning backlight LCD, is discussed.  相似文献   

3.
Abstract— The scanning‐backlight technique to improve the motion performance of LCDs is introduced. This technique, however, has some drawbacks such as double edges and color aberration, which may become visible in moving patterns. A method combining accurate measurements of temporal luminance transitions with the simulation of human‐eye tracking and spatiotemporal integration is used to model the motion‐induced profile of an edge moving on a scanning‐backlight LCD‐TV panel that exhibits the two drawbacks mentioned above. The model results are validated with a perception experiment including different refresh rates, and a high correspondence is found between the simulated apparent edge and the one that is perceived during actual motion. Apart from the motion‐induced edge blur, the perception of a moving line or square‐wave grating can also be predicted by the same method starting from the temporal impulse and frame‐sequential response curves, respectively. Motion‐induced image degradation is evaluated for both a scanning‐ and continuous‐backlight mode based on three different characteristics: edge blur, line spreading, and modulation depth of square‐wave grating. The results indicate that the scanning‐backlight mode results in better motion performance.  相似文献   

4.
Abstract— LCD motion blur is a well‐known phenomenon, and a lot of research is attributed to characterize and improve it. Until recently, most studies were focused on explaining the effects visible in black‐and‐white patterns, and hence color effects were ignored. However, when a colored pattern is moving over a colored background, an additional motion‐induced artifact becomes visible, which is referred to as chromatic aberration. To describe this phenomenon, our model to characterize the appearance of moving achromatic patterns is extended in such a way that it now calculates the apparent image from the temporal step response of the individual primary colors. The results of a perception experiment indicate that there is a good correspondence between the apparent image predicted with the model and the actual image perceived during motion.  相似文献   

5.
Abstract— An impulsive driving technique has been widely adopted for the elimination of motion blur in LCDs. Although the problem of slow temporal response time is very well known for LCDs, the inherent motion blur of moving objects in hold‐type displays has a more‐serious impact on display performance. It is well known that even very fast LCDs with zero response time still suffer from the motion‐blur artifact due to hold‐type driving effects. However, a fast temporal response is also critical in order to maximize the blur‐reduction effect even in the case of impulsive driving. In this paper, the special behavior of LC molecules in an impulsive driving environment has been analyzed especially for the case of black‐frame insertion, and we propose an effective means to implement optimized response‐time compensation (RTC) for the black‐frame insertion technique.  相似文献   

6.
Abstract— Scanning‐backlight technology reduces motion blur caused by the sample‐and‐hold effect of traditional liquid‐crystal displays. A side effect of impulse‐type backlight systems is that large‐area flicker may be introduced (like in displays using cathode‐ray tubes). The seriousness of the perceived large‐area flicker is investigated in perception experiments for various implementations of a scanning‐backlight system and for different types of image material. Results show that the main factors contributing to the visibility of large‐area flicker are refresh rate, temporal luminance distribution within a frame period, spatial luminance distribution in the image, and whether or not there is motion in the image.  相似文献   

7.
Abstract— The moving‐picture quality of several LCD modules was evaluated by using the quantitative parameter, normalized blurred edge width (N‐BEW), or the N‐BEW value normalized by time (N‐BET), measured and calculated by the developed time‐sequence‐image integration system which has taken LCD‐response characteristics and human‐vision characteristics into consideration. The quality of several LCD TVs is also discussed by using subjective evaluation and the unified quantitative parameter moving‐picture response time (MPRT), which is based on N‐BEW. According to the experimental and calculated results, it is clear that the value of N‐BET can express moving‐picture quality, which depends on the liquid‐crystal response time and the hold‐type character of LCDs. Also, it is confirmed that the value of MPRT can express the moving‐picture quality by comparison with subjective evaluation. The target values of MPRT and N‐BET for the motion‐blur‐less picture are deduced by extrapolating the subjective evaluation results. Then, guidelines to improve the moving picture quality are demonstrated.  相似文献   

8.
Abstract— Compared to the conventional cathode‐ray‐tube TV, the conventional liquid‐crystal TV has the shortcoming of motion blur. Motion blur can be characterized by the motion‐picture response‐time metric (MPRT). The MPRT of a display can be measured directly using a commercial MPRT instrument, but it is expensive in comparison with a photodiode that is used in temporal‐response (temporal luminance transition) measurements. An alternative approach is to determine the motion blur indirectly via the temporal point‐spread function (PSF), which does not need an accurate tracking mechanism as required for the direct “spatial” measurement techniques. In this paper, the measured motion blur is compared by using both the spatial‐tracking‐camera approach and the temporal‐response approach at various backlight flashing widths. In comparison to other motion‐blur studies, this work has two unique advantages: (1) both spatial and temporal information was measured simultaneously and (2) several temporal apertures of the display were used to represent different temporal PSFs. This study shows that the temporal method is an attractive alternative for the MPRT instrument to characterize the LCD's temporal performance.  相似文献   

9.
Abstract— Small‐form‐factor liquid‐crystal displays (LCDs) are mainly used in mobile applications (e.g., mobile phones, PDAs, and portable game consoles) but also in digital still cameras, video cameras, automotive applications, etc. Like all active‐matrix LCDs, mobile displays suffer from motion blur caused by the sample‐and‐hold effect. One option for improving the motion portrayal on active‐matrix LCDs is the use of a scanning backlight, which results in an imaging behavior similar to the one present in impulsive displays. In this paper, the realization of a scanning backlight for mobile displays is reported. This employs a backlight with seven individually lit segments for reducing the motion blur. Results of perception experiments performed with two identical displays confirm the benefit of using this technology. Optimal driving conditions result in a major improvement in motion portrayal on mobile LCDs.  相似文献   

10.
Abstract— A simulation system incorporating pixel response and eye‐trace integration was developed to evaluate the moving‐image performance of high‐quality LCD TVs. A simple formula was derived for moving‐edge simulation, which can be used to evaluate the visual effects of arbitrary response waveforms. A model of exponential decay with dynamic time constants is proposed for the LC response to perform moving‐image simulation. The model was used to evaluate the visual effects of various motion‐blur‐reduction techniques. Six different motion‐blur‐reduction techniques were evaluated in terms of their visual effects. Among them, three basic techniques show certain defects, which are further analyzed by simulation. The other three advanced techniques show excellent performance, and, therefore, are recommended for use in high‐quality LCD TVs.  相似文献   

11.
Degradation of motion image quality by motion blur on hold‐type displays, such as liquid‐crystal displays and organic light‐emitting diode displays, is a well‐known issue. To improve motion image quality, a driving method with a shorter temporal aperture has been proposed. However, a shorter temporal aperture requires higher instantaneous luminance on displays. Higher instantaneous luminance accelerates the lifetime degradation of organic light‐emitting diode. Therefore, we have been developing a driving method with adaptive temporal aperture control for a longer lifetime and better motion image quality. However, two image quality degradations were perceived when this driving method was applied. One of these degradations was caused at the boundary between the different temporal apertures. The other degradation was caused by switching the temporal aperture between frames. Hence, we have also proposed transition area and period insertion methods to suppress these degradations. In this paper, we discuss the mechanism of these degradations and confirm the effectiveness of our proposed methods by subjective evaluations. In the results, the degradations were suppressed by inserting 80 lines of transition area and by inserting 50 frames of transition period.  相似文献   

12.
In this paper, we present a high image quality organic light‐emitting diode (OLED) display with motion blur reduction technology. Our latest work includes driving method that reduces motion blur using an adaptive black data insertion, brightness compensation technology, the simple structure pixel with low capacitance coupling for horizontal noise, and the multifunction integrated gate driver. The moving picture response time (MPRT) value of the OLED display panel with a fast response time was significantly affected by the frame frequency and the compensation driving method. The MPRT value of the large‐size OLED display panels was significantly decreased by using the integrated gate driver circuit with an MPRT reduction method. The decrease in the MPRT value originated from the turning of the emitting pixels off in advance resulting from providing black data. The integrated gate drivers were designed to achieve the normal display, the black data insertion, and the compensation mode. The MPRT value of the 65‐in. ultrahigh‐definition (UHD) OLED panels was decreased to 3.4 ms by using an integrated gate driver circuit. The motion blur of large‐size OLED display panels was significantly reduced due to a decrease in the MPRT value.  相似文献   

13.
Abstract— Several leading technologies for flexible liquid‐crystal displays have been developed recently at ERSO. The roll‐to‐roll compatible techniques, polymer‐added liquid crystal, have been applied on a film‐like substrate. A flexible black‐and‐white cholesteric liquid‐crystal display was also implemented by photo‐induced phase separation. Color filters placed on a plastic substrate by a low‐temperature manufacturing process was successfully fabricated. A novel design of a wide‐viewing‐angle color plastic LCD was also proposed.  相似文献   

14.
A new liquid crystal display device with fast response time, high transmittance, and low voltage for virtual reality is reported. When driven at 90 Hz with 17% duty ratio, the motion picture response time is 1.5 ms, which is comparable with cathode‐ray tube, leading to indistinguishable motion blur. Moreover, this device enables high‐resolution density because only one thin‐film transistor per pixel is needed and it has a built‐in storage capacitor.  相似文献   

15.
Abstract— A simulation method based on measured liquid‐crystal responses and human‐vision properties was proposed to characterize the motion blur of LCDs. A perceptual experiment was implemented to validate the simulation model within different viewing conditions by changing the visual angle. The results indicate that the smaller visual angle of the mobile display has no statistic significant effect on smooth‐pursuit eye tracking when perceiving a moving block on a screen. The calculation process of quantitative metric was presented based on the measured light behavior and the simulation model. In the end, the different motion‐blur reduction approaches were evaluated for mobile LCDs.  相似文献   

16.
Abstract— The primary goal of this study was to find a measurement method for motion blur which is easy to carry out and gives results that can be reproduced from one lab to another. This method should be able to also take into account methods for reduction of motion blur such as backlight flashing. Two methods have been compared. The first method uses a high‐speed camera that permits us to directly picture the blurred‐edge profile. The second one exploits the mathematical analysis of the motion‐blur formation to construct the blurred‐edge profile from the temporal step response. Measurement results and method proposals are given and discussed.  相似文献   

17.
Abstract— A liquid‐crystal‐display (LCD) screen is composed of many picture elements. The size of the electrodes of the picture elements is finite, and that causes edge effects in the director distribution. In order to examine the edge effects, a theoretical model of the electrode must be designed. According to this model, partial differential equations applied to the director distribution are obtained and solved by numerical method. Furthermore, the theoretical upper limit of the picture‐element density will be given.  相似文献   

18.
Abstract— LCD motion blur is a well‐known phenomenon, and several approaches have been developed to address it. This includes very‐high‐performance approaches based on motion‐compensated frame rate conversion (MC‐FRC) and very‐low‐cost approaches based on impulsive driving. Impulsive‐driving schemes are attractive because of their low cost, but suffer from two significant issues — loss of luminance and large‐area flicker. A new impulsive‐driving approach using motion‐adaptive alternate gamma driving (MA‐AGD), which removes motion blur and preserves the original luminance level without causing large‐area flicker, is proposed.  相似文献   

19.
Abstract— A 1‐D LED‐backlight‐scanning technique and a 2‐D local‐dimming technique for large LCD TVs are presented. These techniques not only reduce the motion‐blur artifacts by means of impulse representation of images in video, but also increase the static contrast ratio by means of local dimming in the image(s). Both techniques exploit a unique feature of an LED backlight in large LCD TVs in which the whole panel is divided into a pre‐defined number of regions such that the luminance in each region is independently controllable. The proposed techniques are implemented in a Xilinx FPGA and demonstrated on a Samsung 40‐in. LCD TV. Measurement results show that the proposed techniques significantly reduce the motion‐blur artifacts, enhance the static contrast ratio by about 3×, and reduce the power consumption by 10% on average.  相似文献   

20.
Abstract— The spatio‐temporal aperture and sample rate of a video display determines both the static and dynamic resolution of the video signal that is rendered. The dynamic display characteristics like the visibility of large‐area flicker, motion judder, and motion blur can be derived from the frame rate and the temporal extent of the pixel aperture (i.e., the temporal aperture). For example, liquid‐crystal displays (LCDs) have an aperture that is relatively small in the spatial dimension and wide in the temporal domain. Consequently, moving objects displayed on an LCD suffer from motion blur. Especially in TV applications, the temporal dimension has a large impact on the overall picture quality. The temporal aperture, together with the frame rate, is shown to predict the amount of perceived large‐area flicker, motion judder, and motion blur and also the performance of motion‐blur reduction algorithms for LCDs. From this analysis it is further determined how to obtain the optimal temporal aperture of a television display, for which not only properties of the human visual system (HVS), but also the properties of the video signal have to be taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号