首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 437 毫秒
1.
The singular optimal control problem for asymptotic stabilisation has been extensively studied in the literature. In this paper, the optimal singular control problem is extended to address a weaker version of closed-loop stability, namely, semistability, which is of paramount importance for consensus control of network dynamical systems. Three approaches are presented to address the nonlinear semistable singular control problem. Namely, a singular perturbation method is presented to construct a state-feedback singular controller that guarantees closed-loop semistability for nonlinear systems. In this approach, we show that for a non-negative cost-to-go function the minimum cost of a nonlinear semistabilising singular controller is lower than the minimum cost of a singular controller that guarantees asymptotic stability of the closed-loop system. In the second approach, we solve the nonlinear semistable singular control problem by using the cost-to-go function to cancel the singularities in the corresponding Hamilton–Jacobi–Bellman equation. For this case, we show that the minimum value of the singular performance measure is zero. Finally, we provide a framework based on the concepts of state-feedback linearisation and feedback equivalence to solve the singular control problem for semistabilisation of nonlinear dynamical systems. For this approach, we also show that the minimum value of the singular performance measure is zero. Three numerical examples are presented to demonstrate the efficacy of the proposed singular semistabilisation frameworks.  相似文献   

2.
In this paper, we develop a unified framework to address the problem of optimal nonlinear analysis and feedback control for nonlinear stochastic dynamical systems. Specifically, we provide a simplified and tutorial framework for stochastic optimal control and focus on connections between stochastic Lyapunov theory and stochastic Hamilton–Jacobi–Bellman theory. In particular, we show that asymptotic stability in probability of the closed‐loop nonlinear system is guaranteed by means of a Lyapunov function that can clearly be seen to be the solution to the steady‐state form of the stochastic Hamilton–Jacobi–Bellman equation and, hence, guaranteeing both stochastic stability and optimality. In addition, we develop optimal feedback controllers for affine nonlinear systems using an inverse optimality framework tailored to the stochastic stabilization problem. These results are then used to provide extensions of the nonlinear feedback controllers obtained in the literature that minimize general polynomial and multilinear performance criteria. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
This paper studies the problem of finite-time stabilisation of more general high-order nonlinear systems with dynamic and parametric uncertainties. By characterising the unmeasured dynamic uncertainty with finite-time input-to-state stability (FTISS), skillfully combining Lyapunov function, sign function, backstepping, adaptive control and FTISS approaches, and using finite-time stability theory, an adaptive state feedback controller is designed to guarantee high-order uncertain nonlinear systems globally finite-time stable.  相似文献   

4.
5.
Finite-time stability theorem of stochastic nonlinear systems   总被引:1,自引:0,他引:1  
Weisheng Chen  L.C. Jiao 《Automatica》2010,46(12):2105-2108
A new concept of finite-time stability, called stochastically finite-time attractiveness, is defined for a class of stochastic nonlinear systems described by the Itô differential equation. The settling time function is a stochastic variable and its expectation is finite. A theorem and a corollary are given to verify the finite-time attractiveness of stochastic systems based on Lyapunov functions. Two simulation examples are provided to illustrate the applications of the theorem and the corollary established in this paper.  相似文献   

6.
This paper is concerned with the problems of finite-time stability (FTS) and finite-time stabilisation for a class of nonlinear systems with time-varying delay, which can be represented by Takagi–Sugeno fuzzy system. Some new delay-dependent FTS conditions are provided and applied to the design problem of finite-time fuzzy controllers. First, based on an integral inequality and a fuzzy Lyapunov–Krasovskii functional, a delay-dependent FTS criterion is proposed for open-loop fuzzy system by introducing some free fuzzy weighting matrices, which are less conservative than other existing ones. Then, the parallel distributed compensation controller is designed to ensure FTS of the time-delay fuzzy system. Finally, an example is given to illustrate the effectiveness of the proposed design approach.  相似文献   

7.
In this note, non-smooth finite-time stabilization of nonlinear systems with parametric and dynamic uncertainties is investigated. To solve this problem, the input-to-state stability property is used to characterize unmeasured dynamic uncertainties. A constructive partial-state control design is proposed on the basis of involved combined use of Lyapunov, backstepping and input-to-state stability techniques. Under small-gain type local conditions, a solution for the finite-time regulation of a class of uncertain nonlinear systems is obtained  相似文献   

8.
In this paper, we consider a two-player stochastic differential game problem over an infinite time horizon where the players invoke controller and stopper strategies on a nonlinear stochastic differential game problem driven by Brownian motion. The optimal strategies for the two players are given explicitly by exploiting connections between stochastic Lyapunov stability theory and stochastic Hamilton–Jacobi–Isaacs theory. In particular, we show that asymptotic stability in probability of the differential game problem is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution to the steady-state form of the stochastic Hamilton–Jacobi–Isaacs equation, and hence, guaranteeing both stochastic stability and optimality of the closed-loop control and stopper policies. In addition, we develop optimal feedback controller and stopper policies for affine nonlinear systems using an inverse optimality framework tailored to the stochastic differential game problem. These results are then used to provide extensions of the linear feedback controller and stopper policies obtained in the literature to nonlinear feedback controllers and stoppers that minimise and maximise general polynomial and multilinear performance criteria.  相似文献   

9.
This paper considers the finite-time stabilisation for a class of high-order nonlinear systems with both low-order and high-order nonlinearities. Based on the finite-time Lyapunov stability theorem together with the methods of dynamic gain control and adding one power integrator, a state feedback controller with gains being tuned online by two dynamic equations is proposed to guarantee the global finite-time stabilisation of the closed-loop system.  相似文献   

10.
This paper studies the global stabilisation of a class of partial-state feedback nonlinear systems with time-varying delay. By adopting the dynamic gain-based design method and backstepping technique, a state-feedback controller is constructed with the help of appropriate Lyapunov–Krasovskii functional. It is proved that all the measurable states of the closed-loop systems converge to the origin, and a simulation example is given to verify the effectiveness of the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号