首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
针对于具有初始状态不确定性的非线性时不变系统,采用矩形脉冲信号补偿传统的比例微分型一阶和二阶迭代学习控制律.在Lebesgue-p范数度量跟踪误差意义下,利用卷积的推广的Young不等式分析学习控制律的跟踪性能.分析表明,在适当选取比例学习增益,微分学习增益和非线性状态函数的Lipschitz常数以保证收敛因子小于1的前提下,渐近跟踪误差是由初始状态不确定性引起的,而且可通过调节补偿因子予以消减.数值仿真验证了补偿策略的有效性和理论分析的正确性.  相似文献   

2.
This paper deals with the initial shift problem that arises from discrete-time iterative learning control. A unified learning scheme is considered for a class of nonlinear systems with well-defined relative degree, which adopts the error data with anticipation in time and provides wider freedom for the updating law formation. The sufficient convergence condition is derived to enable the system to possess asymptotic tracking capability and the converged output trajectory can be assessed by the initial condition. The tracking performance is improved further by the introduction of initial rectifying action and the complete tracking is achieved over a specified interval.  相似文献   

3.
This note is concerned with the robust discrete-time iterative learning control (ILC) design for nonlinear systems with varying initial state shifts. A two-gain ILC law is considered using a 2-D analysis approach. Sufficient conditions are derived to guarantee both convergence of the learning process for fixed initial condition and boundedness of the tracking error for variable initial condition. It is shown that the error data with anticipation in time can well handle the varying initial state shifts in discrete-time ILC.   相似文献   

4.
This paper addresses the problem of iterative learning control (ILC) for a class of nonlinear continuous‐time systems with higher relative degree. The proposed ILC solution is a family of updating laws using differentiations of tracking error with the order less than the system relative degree. A unified convergence condition for this family of ILC updating laws is provided and proved to be independent of the highest order of differentiation. The application to path tracking of a robotic manipulator is presented to illustrate the effectiveness of the proposed method.  相似文献   

5.
本文讨论了二阶系统在任意初态偏差下的自适应控制问题,借助学习控制及其初始修正的思想,提出了两种带有修正初态偏差功能的自适应控制策略:一阶吸引子控制器和零阶吸引子控制器.两种控制器都是将整个控制过程分成若干个等长时间的子过程,在每个子过程中控制算法都会进行误差校正和参数学习.其中,一阶吸引子控制器在每个子过程中同时修正所有状态偏差;而零阶吸引子控制器在每个子过程中先修正高阶状态偏差,再修正低阶状态偏差.并且两种控制器在控制过程中,都利用反正切函数对控制量进行连续化处理,解决了控制过程中的颤振问题.最后,通过计算机仿真验证了算法的有效性.  相似文献   

6.
初态学习下的迭代学习控制   总被引:2,自引:1,他引:2  
孙明轩 《控制与决策》2007,22(8):848-852
提出一种新的初态学习律,以放宽常规迭代学习控制方法的初始定位条件.它允许一定的定位误差,在迭代中不需要定位在某一具体位置上,使得学习控制系统具有鲁棒收敛性.针对二阶LTI系统,给出了输入学习律及初态学习律的收敛性充分条件.依据收敛性条件,学习增益的选取需系统矩阵的估计值,但在一定建模误差下,仍能保证算法的收敛性.所提出的初态学习律本身及其收敛性条件均与输入矩阵无关.  相似文献   

7.
In this paper, a model reference adaptive control strategy is used to design an iterative learning controller for a class of repeatable nonlinear systems with uncertain parameters, high relative degree, initial output resetting error, input disturbance and output noise. The class of nonlinear systems should satisfy some differential geometric conditions such that the plant can be transformed via a state transformation into an output feedback canonical form. A suitable error model is derived based on signals filtered from plant input and output. The learning controller compensates for the unknown parameters, uncertainties and nonlinearity via projection type adaptation laws which update control parameters along the iteration domain. It is shown that the internal signals remain bounded for all iterations. The output tracking error will converge to a profile which can be tuned by design parameters and the learning speed is improved if the learning gain is large.  相似文献   

8.
Jian-Xin Xu  Rui Yan 《Automatica》2004,40(10):1803-1809
In this work we explore the possibility of designing a new iterative learning control scheme for systems without a priori knowledge of the control direction. By incorporating a Nussbaum-type function, a new learning control mechanism is constructed with both differential and difference updating laws. The new learning control mechanism can warrant a LT2 convergence of the tracking error sequence along the iteration axis, in the presence of time-varying parametric uncertainties and local Lipschitz nonlinearities.  相似文献   

9.
In this paper, we design an adaptive iterative learning control method for a class of high-order nonlinear output feedback discrete-time systems with random initial conditions and iteration-varying desired trajectories. An n-step ahead predictor approach is employed to estimate future outputs. The discrete Nussbaum gain method is incorporated into the control design to deal with unknown control directions. The proposed control algorithm ensures that the tracking error converges to zero asymptotically along the iterative learning axis except for the beginning outputs affected by random initial conditions. A numerical simulation is carried out to demonstrate the efficacy of the presented control laws.  相似文献   

10.
This note demonstrates that the design of a robust iterative learning control is straightforward for uncertain linear time-invariant systems satisfying the robust performance condition. It is shown that once a controller is designed to satisfy the well-known robust performance condition, a convergent updating rule involving the performance weighting function can be directly obtained. It is also shown that for a particular choice of this weighting function, one can achieve a perfect tracking. In the case where this choice is not allowable, a sufficient condition ensuring that the least upper bound of the /spl Lscr//sub 2/-norm of the final tracking error is less than the least upper bound of the /spl Lscr//sub 2/-norm of the initial tracking error is provided. This sufficient condition also guarantees that the infinity-norm of the final tracking error is less than the infinity-norm of the initial tracking error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号