首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the problem of global adaptive finite-time stabilisation for a class of switched nonlinearly parameterised systems. Without requiring that each subsystem is globally adaptively finite-time stabilisable, a switched adaptive finite-time control scheme is developed by exploiting the multiple Lyapunov functions method and adding a power integrator technique. By using the parameter separation technique, the unknown parameters are separated from nonlinear functions. On the basis of finite-time Lyapunov stability theory, it is proved that the proposed controller can guarantee that the state of the resulting closed-loop system converges to the origin in finite time. Finally, an example is given to demonstrate the effectiveness of the proposed method.  相似文献   

2.
针对一类多输入非线性串联系统提出了基于Backstepping方法的次优控制的设计.首先,将串联控制系统分为几个子系统,然后为每个子系统分别设计辅助子系统及相应的辅助控制变量,进一步利用State_DependentAlgebraicRiccatiEquation(SDARE)技术为每个辅助子系统设计次优控制律.设计出的次优控制律使得原状态变量和辅助控制变量(即:辅助反馈变量)具有一定的渐近特性,因此,不但可在线获得次优控制律的解析解,而且保证了原闭环系统的全局渐近稳定性.最后通过一个两输入的二阶串联系统的数字仿真结果验证了该优化设计方法的有效性.  相似文献   

3.
多变量连续预测控制的动态补偿*   总被引:1,自引:0,他引:1  
本文利用多变量系统的频域设计方法-特征结构分解,将多变量系统分解为一组独立的SISO特征子系统,对各特征子系统,通过加权补偿,由极点配置保证闭环特征子系统稳定,进而保证原闭环系统渐近稳定。  相似文献   

4.
不确定非线性切换系统的鲁棒H控制   总被引:1,自引:0,他引:1  
讨论了一类不确定非线性切换系统的鲁棒H∞控制问题.首先,基于多Lyapunov函数方法,设计状态反馈控制器以及切换律,使得对于所有允许的不确定性.相应的闭环系统渐近稳定又具有指定的L2-增益.该问题可解的充分条件以一组含有纯量函数的偏微分不等式形式给出,此偏微分不等式较一般Hamilton-Jacobi不等式更具可解性.所提出的方法不要求任何一个子系统渐近稳定.接着作为应用,借助混杂状态反馈策略讨论了非切换不确定非线性系统的鲁棒H∞控制问题.最后通过一个简单例子说明了控制设计方法的可行性.  相似文献   

5.
苏佰丽  李少远 《自动化学报》2008,34(9):1141-1147
针对一类具有不确定性和变量约束的非线性切换系统, 提出了一种基于Lyapunov函数的预测控制方法, 其中状态约束分为两种情况: 1)要求状态变量在所有时刻都满足约束(称为硬约束); 2)允许状态在某些时刻超出约束(称为软约束). 主要思想是: 对切换系统的每一个子系统, 在输入和状态均受约束的情况下, 设计基于Lyapunov函数的有界控制器和预测控制器, 在两者之间适当切换, 得到初始稳定区域的描述并使得子闭环系统保持稳定. 对整个切换系统, 设计适当的切换律以保证: 1)在切换时刻, 闭环系统的状态处在切入系统的稳定区域内; 2)切入模块的Lyapunov函数是非增的, 从而可保证稳定性. 在状态变量的约束是软约束时, 对每一子模块首先设计一个控制策略, 尽快将状态控制到初始稳定区域, 然后再利用稳定区域内的控制律使系统稳定.  相似文献   

6.
In this paper, we investigate a decentralized stabilization problem of uncertain multi-agent systems with mixed delays including discrete and distributed time-varying delays based on passivity stability. We design a decentralized state-feedback stabilization scheme such that the family of closed-loop feedback subsystems enjoys the delay-dependent passivity stability for each subsystem. Then, by employing a new Lyapunov-Krasovskii function, a linear matrix inequality (LMI) approach is developed to establish the delay-dependent criteria for the passivity stability of multi-agent systems. The sufficient condition is given for checking the passivity stability. The proposed LMI result is computationally efficient. An example is given to show the effectiveness of the method.  相似文献   

7.
针对离散模糊系统,提出一类离散切换模糊系统的稳定性问题.使用切换技术及单Lyapunov函数、多Lyapunov函数方法构造出连续状态反馈控制器,使得相应的闭环系统渐近稳定,同时设计可以实现系统全局渐近稳定的切换律.模型中的每个切换系统的子系统是离散模糊系统,取常用的平行分布补偿PDC控制器,主要条件以凸组合和矩阵不等式的形式给出,具有较强的可解性.计算机仿真结果表明设计方法的可行性与有效性.  相似文献   

8.
9.
Event-triggered control strategies have been recently proposed as alternatives to traditional time-triggered periodic sampling for feedback control systems. This paper studies the event-triggered control problem for distributed networked control systems (NCS). In order to reduce the network traffic and the resource of computation, we propose a new decentralized event-triggered scheme for the NCS, where a subsystem broadcast its state information to its neighbors only when the subsystem’s local state error exceeds a threshold with on-line adaption. The asymptotic stability of the resulting closed-loop system is guaranteed by the event-triggered feedback scheme. In addition, the paper gives the maximal allowable positive bounds on transmission delays for the networked control systems. Finally, the results are illustrated to be efficient by one simulated example.  相似文献   

10.
11.
The stability analysis and asynchronous stabilization problems for a class of discrete-time switched nonlinear systems with stable and unstable subsystems are investigated in this paper. The Takagi-Sugeno (T-S) fuzzy model is used to represent each nonlinear subsystem. Through using the T-S fuzzy model, the studied systems are modeled into the switched T-S fuzzy systems. By using the switching fuzzy-basis-dependent Lyapunov functions (FLFs) approach and mode-dependent average dwell time (MDADT) technique, the stability conditions for the open-loop switched T-S fuzzy systems with unstable subsystems and asynchronous stabilization conditions for the closed-loop switched T-S fuzzy systems with unstable subsystems are obtained. Both the stability results and asynchronous stabilization results are derived in terms of linear matrix inequalities (LMIs). Finally two numerical examples are provided to illustrate the effectiveness of the results obtained.  相似文献   

12.
In this paper, a novel decentralised differential game strategy for large-scale nonlinear systems with matched interconnections is developed by using adaptive dynamic programming technique. First, the Nash-equilibrium solutions of the corresponding isolated differential game subsystems are found by appropriately redefining the associated cost functions accounting for the bounds of interconnections. Then, the decentralised differential game strategy is established by integrating all the modified Nash-equilibrium solutions of the isolated subsystems to stabilise the overall system. Next, the solutions of Hamilton–Jacobi–Isaaci equations are approximated online by constructing a set of critic neural networks with adaptation law of weights. The stability analysis of each subsystem is provided to show that all the signals in the closed-loop system are guaranteed to be bounded by utilising Lyapunov method. Finally, the effectiveness of the proposed decentralised differential game method is illustrated by a simple example.  相似文献   

13.
In this paper,the robust stability issue of switched uncertain multidelay systems resulting from actuator failures is considered.Based on the average dwell time approach,a set of suitable switching signals is designed by using the total activation time ratio between the stable subsystem and the unstable one.It is first proven that the resulting closed-loop system is robustly exponentially stable for some allowable upper bound of delays if the nominal system with zero delay is exponentially stable under these switching laws.Particularly,the maximal upper bound of delays can be obtained from the linear matrix inequalities.At last,the effectiveness of the proposed method is demonstrated by a simulation example.  相似文献   

14.
In this paper, the problem of global decentralised stabilisation for a class of uncertain large-scale feedforward nonlinear systems is investigated. The system under consideration is allowed to contain unknown non-Lipschitz continuous nonlinear terms. The design of the global decentralised controllers takes a two steps procedure. First of all, based on the adding a power integrator technique and the homogeneous domination approach a local homogeneous decentralised controller is proposed for each subsystem of the large-scale feedforward nonlinear system. Then, we integrate a series of nested saturation functions with the homogeneous decentralised controllers and adjust the saturation levels to ensure globally asymptotic stability of the closed-loop system. Simulation studies are conducted to illustrate the effectiveness of the proposed control method.  相似文献   

15.
Time-delay control (TDC) has been widely used to control various systems thanks to its simplicity and robustness. The control distribution matrix of TDC is assumed to be constant and tuned heuristically. However, the constant TDC control gain could degrade the system control performance and even cause the closed-loop system to become unstable when the system parameters are substantially changing, resulting in the violation of the stability criterion of TDC. We propose an algorithm for automatic tuning of the TDC gain in order to guarantee stability by using a modified Nussbaum function. Thus, the closed-loop system controlled by TDC with the modified Nussbaum function is proven to be semi-globally uniformly ultimately bounded. The auto-tuned gain satisfies the stability criterion of TDC and the proposed method can widen the range of implementable dynamic systems. Simulations are conducted to verify the simplicity, robustness, and guaranteed stability by auto-tuning of the proposed method.  相似文献   

16.
本文针对有界扰动作用下的线性离散大系统,提出了事件触发双模分布式预测控制设计方法.利用输入状态稳定性(input-to-state stability,ISS)理论建立了仅与子系统自身信息相关的事件触发条件.只有子系统满足相应的事件触发条件,才进行状态信息的传输和分布式预测控制优化问题的求解,并与邻域子系统交互最优解作用下的关联信息.当子系统进入不变集时,采用状态反馈控制律进行镇定,并与进入不变集的邻域子系统不再交互信息.分析了算法的递推可行性和系统的闭环稳定性,给出了扰动的上界.最后,通过车辆控制系统对算法进行仿真验证,结果表明,本文提出的方法能够有效降低优化问题的求解次数和关联信息的交互次数,节约计算资源和通信资源.  相似文献   

17.
Under the weaker conditions on the drift and diffusion terms, this paper focuses on the global decentralised output-feedback control for a class of large-scale stochastic high-order upper-triangular nonlinear systems. By introducing an appropriate coordinate transformation, the original system is transformed into an equivalent one with tunable gain. After that, by reasonably combing the homogeneous domination approach with stochastic nonlinear systems stability criterion, and skillfully choosing the low gain scale, the decentralised output-feedback controller is constructed for each subsystem to ensure that the closed-loop system is globally asymptotically stable in probability. The simulation example is given to demonstrate the effectiveness of the proposed design scheme.  相似文献   

18.
一类带有变时滞的广义切换系统的滑模控制   总被引:2,自引:0,他引:2  
研究一类具有非匹配不确定性和变时滞的广义切换系统的滑模控制问题.首先,基于Lyapunov稳定性理论和线性矩阵不等式(LMI)技术,针对每个子系统设计对应的积分型滑模面,给出了每个滑动模态方程鲁棒渐近稳定的充分条件;然后,设计了滑模控制器及切换规则,使得闭环系统的状态能够到达滑模面上,产生滑动模态;最后以仿真实例说明了所提出方法的有效性.  相似文献   

19.
This paper deals with designing a unilateral tracking controller for the Switching Positive Linear Systems (SPLSs). Positive systems are widespread, and most biological, economic systems, and so on, with nonnegative variables, belong to this class of systems. System states are assumed partially unmeasurable; thus, a reduced-order positive switching observer is utilized to improve the closed-loop system response. Also, interval uncertainty is considered to provide a more practical result. In addition, a unilateral tracking controller is developed in this study. The unilateral tracking controller keeps the system and observer states in the same direction as the reference system and system output. Also, the unilateral tracking method avoids overshoot. System stability is presented in synchronous and asynchronous switching conditions. In asynchronous switching mode, controller switches have a time lag behind the system's switching. The switching time lag in asynchronous mode is assumed unknown with a known upper bound for each subsystem. The closed-loop system's stability is guaranteed by utilizing multiple Lyapunov functions, and the Mode Dependent Average Dwell Time (MDADT) strategy. The designed unilateral tracking controller is developed to track a reference system. Also, sufficient conditions are provided to guarantee the L1-gain performance of the closed-loop system. Finally, an illustrative example is provided to demonstrate the proposed scheme's effectiveness compared with the foremost existing solutions.  相似文献   

20.
对带有时变时滞和外部扰动的一类离散区间二型Tagaki-Sugeno(T–S)模型非线性系统,研究了其广义耗散性能分析与状态反馈控制器的设计问题.与一型T–S模糊系统相比,区间二型模糊系统能更好地处理隶属函数中的不确定信息.首先,通过模型转换的方法,对系统的滞后状态进行变换,从而将时变时滞的不确定性从原系统中分离出.根据转换后的仅含定常时滞和具有有界误差范数的两个子系统,利用时滞依赖的李雅普诺夫-克拉索夫斯基泛函方法推导出了使系统渐近稳定并具有广义耗散性能的充分条件.接着,设计了保证闭环系统渐近稳定并具有广义耗散性能指标的状态反馈控制器.最后由数值仿真验证了设计方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号