首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 797 毫秒

1.  基于约束投影的近邻传播聚类算法  
   钱雪忠  赵建芳  贾志伟《计算机工程与科学》,2014年第3期
   提出了一种基于约束投影的近邻传播AP聚类算法。AP算法是在数据点相似度矩阵的基础上进行聚类的,很多传统的聚类方法都无法与其相媲美。但是,对于结构复杂的数据,AP算法往往得不到理想的结果。文中算法先对约束信息进行扩展,然后利用扩展的约束信息指导投影矩阵的获取,在低维空间中,利用约束信息对聚类结果进行修正。实验表明,文中算法与对比算法相比,时间性能更优,聚类效果更佳。    

2.  基于流形距离的半监督近邻传播聚类算法*  
   冯晓磊  于洪涛《计算机应用研究》,2011年第28卷第10期
   通过学习数据集的低维流形结构,给出一种流形距离测度;结合成对约束信息,调整数据的相似度矩阵,将其作为近邻传播算法的输入,提出了基于流形距离的半监督近邻传播聚类算法(SAP-MD)。通过在UCI标准数据集上的仿真实验表明,SAP-MD算法相比于仅利用成对约束信息的聚类算法,在聚类性能上有很大提高。    

3.  基于核自适应的近邻传播聚类算法  
   付迎丁  兰巨龙《计算机应用研究》,2012年第29卷第5期
   近邻传播聚类(AP)方法是近年来出现的一种广受关注的聚类方法,在处理多类、大规模数据集时,能够在较短的时间得到较理想的结果,因此与传统方法相比具有很大的优势。但是对于一些聚类结构复杂的数据集,往往不能得到很好的聚类结果。通过分析数据的聚类特性,设计了一种可以根据数据结构自动调整参数的核函数,数据集在其映射得到的核空间中线性可分或几乎线性可分,对该核空间中的数据集进行近邻传播聚类,有效提高了AP聚类的精确度和速度。算法有效性分析以及仿真实验验证了所提算法在处理大规模复杂结构数据集上的性能优于原始AP算法。    

4.  一种分层组合的半监督近邻传播聚类算法  
   张震 汪斌强 伊鹏 兰巨龙《电子与信息学报》,2013年第35卷第3期
    针对近邻传播(AP)聚类算法的计算复杂度和准确性,该文提出一种分层组合的半监督近邻传播聚类算法(SAP-SC)。算法引入“分层聚类”的思想,将一次AP聚类过程等分成若干层聚类,使得处理过程简单、易于实现;每层只关注聚类“困难”的数据点,并通过构造“成对点约束”和使用“子簇标签映射”进行半监督学习;基于“组合提升”的方法将各层聚类结果加权叠加,从而提升了算法的准确性能。理论分析和实验结果表明:算法在聚类准确性和计算复杂度方面有了较大改进。    

5.  基于互近邻一致性的近邻传播算法  
         《计算机应用研究》,2012年第29卷第7期
   近邻传播(AP)算法是一种新提出的聚类算法,是在数据点的相似度矩阵的基础上进行聚类,通过数据点之间交换信息,最后得到聚类结果。提出了基于互近邻一致性近邻传播算法,即KMNC-AP算法,该算法利用互近邻一致性调整数据点之间的相似度,进而提高聚类效率和精确度。实验结果表明,该算法在处理能力和运算速度上优于原算法。    

6.  密度不敏感的近邻传播聚类算法研究  
   冯晓磊  于洪涛《计算机工程》,2012年第38卷第2期
   近邻传播算法在非凸形、密度不均匀的数据集上很难得到理想的聚类结果。为此,基于核聚类的思想,将数据集非线性地映射到高维空间,使数据集更加分离。利用共享最近邻的相似度度量方法,提出一种密度不敏感的近邻传播算法DIS-AP,以弥补原算法易受特征集维数和密度影响的缺点,从而有效解决数据集非凸和密度不均匀问题,拓宽算法的应用范围。仿真实验结果证明,DIS-AP算法具有更好的聚类性能。    

7.  基于最近邻原则的半监督聚类算法  被引次数:1
   计华  张化祥  孙晓燕《计算机工程与设计》,2011年第32卷第7期
   基于最近邻原则的半监督聚类算法是以基于最近邻的聚类中心求解算法为基础的。在基于最近邻的聚类中心求解算法中,用相似度矩阵记录数据点间的相似程度,由目标函数最小值求得聚类的类中心点。在基于最近邻原则的半监督聚类算法中,根据约束信息来调整相似度矩阵G,数据点间相似度的变化引起了数据点间加权欧式距离的变化,由此更新加权欧式距离矩阵M,最后执行聚类中心求解算法完成聚类。大量实验结果表明,该算法能获得较好的聚类结果。    

8.  面向大规模数据集的近邻传播聚类  被引次数:1
   谷瑞军  汪加才  陈耿  陈圣磊《计算机工程》,2010年第36卷第23期
   近邻传播聚类在计算过程中需构建相似度矩阵,该矩阵的规模随样本数急剧增长,限制了算法在大规模数据集上的直接应用。为此,提出一种改进的近邻传播聚类算法,利用数据点的局部分布,借鉴半监督聚类的思想构造稀疏化的相似度矩阵,并对聚类结果中的簇代表点再次或多次聚类,直至得到合适的簇划分。实验结果表明,该算法在处理能力和运算速度上优于原算法。    

9.  基于属性关系矩阵的AP子空间聚类算法  
   朱红  丁世飞《量子电子学报》,2016年第6期
   仿射传播(Affinity Propagation,AP)聚类算法将所有数据点作为潜在的聚类中心,在相似度矩阵的基础上通过消息传递进行聚类,但不适用于子空间聚类.基于属性关系矩阵的AP子空间聚类算法(ARMAP)是一种异步软子空间聚类算法,通过计算属性a的α-β邻域得到属性的关系矩阵,查找极大全1子矩阵得到数据集的兴趣度子空间,在各兴趣度子空间使用AP算法聚类,完成子空间聚类的任务.ARMAP算法将子空间的查找转换成查找矩阵的极大全1子矩阵,在正确查找子空间的同时降低了时间复杂度,既保留了AP聚类算法的优点,又克服了AP算法不能进行子空间聚类的不足.    

10.  P2P流量的精细化识别方法研究  
   杜锡寿  陈庶樵  张建辉  陈伟《电子与信息学报》,2012年第7期
   目前,已有多种方法可高效准确地完成对P2P流量的粗识别,但对P2P流量的精细化识别研究较少。该文首次将近邻传播(Affinity Propagation,AP)算法引入该领域,在Hi-WAP算法的基础上融合半监督聚类思想提出了一种基于分层加权半监督近邻传播(Hierarchical Weighted Semi-supervised AP,Hi-WSAP)算法的P2P流量精细化识别方法。该方法仅利用10个可快速计算获取的网络流特征对P2P流量按应用进行半监督聚类。两组数据集下的实验结果表明,该方法识别准确率高,时间复杂度低,为P2P流量的实时精细化识别提供了一种实现思路。    

11.  基于模糊连接度的近邻传播聚类图像分割方法  被引次数:1
   杜艳新  葛洪伟  肖志勇《计算机应用》,2014年第34卷第11期
   针对现有近邻传播聚类图像分割方法分割精度低的问题,提出一种基于模糊连接度的邻近传播聚类(FCAP)图像分割算法.针对传统模糊连接度算法不能得出任意点对间模糊连接度的不足,结合最大生成树提出了全模糊连接度算法.FCAP算法先使用Normalized Cut超像素技术进行超像素分割,这些超像素可以看作数据点以及它们之间的模糊连接度;然后使用所提出的全模糊连接度算法计算超像素间的模糊连接度,根据模糊连接度和空间信息计算超像素的相似度;最后使用近邻传播(AP)聚类算法完成分割.实验结果表明,FCAP算法明显优于超像素处理后直接使用AP聚类算法进行分割的方法,并且优于无监督图像分割方法.    

12.  改进近邻传播聚类的彩色图像分割  被引次数:1
   许晓丽  卢志茂  张格森  李纯  张琦《计算机辅助设计与图形学学报》,2012年第24卷第4期
   针对近邻传播(AP)聚类算法存在运算时间长、空间复杂度高而难以应用于较大规模图像数据处理的问题,提出一种将mean shift(MS)算法和AP算法相结合的彩色图像分割方法——MSAP算法.首先应用MS算法对输入目标图像进行预分割,将分割后的区域数目代替原图像像素点数目作为AP算法输入数据的规模,计算每个区域中所有像素的彩色向量平均值,并将其作为AP算法输入的数据点,选用数据点间的距离作为相似度的测度指标;然后应用AP算法在数据相似度矩阵上进行聚类,得到最终的图像分割结果.实验结果表明,与AP算法相比,MSAP算法在运行时间和分割效果方面都有显著的提高.    

13.  不完整大数据的分布式聚类填充算法  
   冷泳林  陈志奎  张清辰  鲁富宇《计算机工程》,2015年第5期
   传统大数据填充算法是根据整个数据集对缺失数据进行填充,使得填充值容易受到不同类别数据的干扰,导致填充结果不精确。针对该问题,给出不完整数据的相似度度量方法,使用近邻传播( AP )算法对不完整数据进行聚类。采用云计算技术优化AP聚类算法,实现一种基于MapReduce的分布式聚类算法,根据算法聚类结果将同一类数据对象划分到相同簇中,并利用同一类对象的属性值对缺失值进行填充。实验结果表明,该算法能实现不完整大数据的聚类,同时加快聚类速度,提高缺失数据的填充精度。    

14.  面向大规模数据的分层近邻传播聚类算法  
   刘晓楠  尹美娟  李明涛  姚东  陈武平《计算机科学》,2014年第41卷第3期
   近邻传播(Affinity Propagation,AP)聚类具有不需要设定聚类个数、快速准确的优点,但无法适应于大规模数据的应用需求。针对此问题,提出了分层近邻传播聚类算法。首先,将待聚类数据集划分为若干适合AP算法高效执行的子集,分别推举出各个子集的聚类中心;然后对所有子集聚类中心再次执行AP聚类,推举出整个数据集的全局聚类中心;最后根据与这些全局聚类中心的相似度对聚类样本进行划分,从而实现对大规模数据的高效聚类。在真实和模拟数据集上的实验结果均表明,与AP聚类和自适应AP聚类相比,该方法在保证较好聚类效果的同时,极大地降低了聚类的时间消耗。    

15.  基于密度调整和流形距离的近邻传播算法  
   夏春梦  倪志伟  倪丽萍  张霖《计算机科学》,2017年第44卷第10期
   针对近邻传播聚类算法在构造相似度矩阵时因对多重尺度和任意形状数据敏感而聚类效果不理想的缺陷,提出一种基于密度调整和流形距离的近邻传播算法。该算法将“领域密度”和“流形理论”的思想引入近邻传播算法,利用基于密度调整和流形的距离更好地刻画了样本空间的真实分布状况,解决了相似度矩阵不能充分表示数据之间内在关系的问题,在一定程度上提高了近邻传播聚类算法的聚类效果。通过在人工数据集和标准数据集上进行实验对比,验证了算法的有效性和优越性。    

16.  适用于复杂结构的多路谱聚类算法的改进  
   李新叶  余晓晔《北京工业大学学报》,2013年第39卷第3期
   为使多路谱聚类方法对复杂结构数据集有效地聚类,根据矩阵扰动理论,利用局部近邻关系更新谱聚类算法(NJW)中的初始相似度矩阵,得到最终的亲和矩阵.理论分析表明,数据集可划分时,该矩阵是理想块矩阵或接近理想块矩阵,保证了本文算法聚类划分的正确性.将本文算法和基于路径的谱聚类、密度敏感的谱聚类以及基于流平面排序的谱聚类进行了比较,结果表明,本文算法在数据集具有复杂分布结构时可以确定聚类个数,得到正确的聚类结果.进一步将本文算法用于真实数据集上的聚类分析,表明本文算法是有效的.    

17.  基于最近邻相似度的孤立点检测及半监督聚类算法  
   郑灵芝  黄德才《计算机系统应用》,2012年第21卷第2期
   传统的聚类算法是一种无监督的学习过程,聚类的精度受到相似性度量方式以及数据集中孤立点的影响,并且算法也没有很好的利用先验知识,无法体现用户的需求。因此提出了基于共享最近邻的孤立点检测及半监督聚类算法。该算法采用共享最近邻为相似度,根据数据点的最近邻居数目来判断是否为孤立点,并在删除孤立点的数据集上进行半监督聚类。在半监督聚类过程中加入了经过扩展的先验知识,同时根据图形分割原理对数据集进行聚类。文中使用真实的数据集进行仿真,其仿真结果表明,本文所提出的算法能有效的检测出孤立点,并具有很好的聚类效果。    

18.  一种迭代加权更新的带加速算子的半监督AP聚类算法  
   韩义波  韩璞《计算机应用研究》,2015年第2期
   为了提高AP算法的数据集分类准确度和收敛速度,提出一种基于改进AP算法的迭代加权更新的带加速算子的半监督AP聚类算法(AP-SSM)。该算法采用带约束的标签映射的方法对样本所属子簇进行分类,在采用传统AP聚类算法上引入了迭代加权更新方法来吸引度参数和适选度参数,并在算法聚类过程中引入了加速因子,考虑到了子簇自身数据中心和权重值的加速因子可以提高聚类精度和算法收敛性能。仿真实验结果表明,AP-SSM算法相比AP、AP-VSM、SAP算法,在数据集分类准确度和算法运行速度上具有更好的效果。    

19.  基于成对约束的判别型半监督聚类分析  被引次数:6
   尹学松  胡恩良  陈松灿《软件学报》,2008年第19卷第11期
   现有一些典型的半监督聚类方法一方面难以有效地解决成对约束的违反问题,另一方面未能同时处理高维数据.通过提出一种基于成对约束的判别型半监督聚类分析方法来同时解决上述问题.该方法有效地利用了监督信息集成数据降维和聚类,即在投影空间中使用基于成对约束的K均值算法对数据聚类,再利用聚类结果选择投影空间.同时,该算法降低了基于约束的半监督聚类算法的计算复杂度,并解决了聚类过程中成对约束的违反问题.在一组真实数据集上的实验结果表明,与现有相关半监督聚类算法相比,新方法不仅能够处理高维数据,还有效地提高了聚类性能.    

20.  基于改进属性约简的细粒度并行AP聚类算法  
   朱红  丁世飞  许新征《计算机研究与发展》,2012年第49卷第12期
   Affinity Propagation(AP)聚类算法将所有数据点作为潜在的聚类中心,在相似度矩阵的基础上通过消息传递进行聚类.与传统聚类方法相比,对于规模很大的数据集,AP是一种快速、有效的聚类方法.正是这样,属性约简对于AP算法非常重要.另外,在大规模并行系统的设计中,细粒度并行是实现高性能的基本策略.提出了一种基于改进属性约简的细粒度并行AP聚类算法(IRPAP),将粒度思想引入到并行计算中.首先分析了并行计算中的粒度原理.然后用改进的属性约简算法对数据集预处理.此算法并行计算并选择差别矩阵元素,降低了时间空间复杂度,最后用AP算法聚类.整个IRPAP算法将任务划分到多个线程同时处理.实验证明,对于大规模数据集的聚类,IRPAP算法比AP算法效率更高.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号