首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 171 毫秒

1.  基于模拟退火选择的动态免疫算法及其应用  
   钱淑渠  武慧虹《计算机工程与应用》,2011年第47卷第36期
   借鉴人工免疫系统的记忆、动态识别等功能及模拟退火选择理论,提出一种适用于求解动态环境优化问题的动态免疫算法(DIASA),并将其用于高维动态约束背包问题。算法设计包括:(1)抗体的亲和力随群体进化而变化;(2)可行抗体被克隆和动态突变,突变概率与抗体浓度相关,而非可行抗体按价值密度贪婪修正;(3)新环境初始群经环境识别算子按不同方式生成,相似环境初始群由记忆细胞及随机抗体产生。数值实验中,选取著名的动态进化算法(ETGA)和动态免疫遗传算法(ISGA),通过不同难度的高维动态约束背包问题进行仿真比较,结果表明:DIASA较算法ISGA和ETGA对不同问题在各环境内表现较强的优化性能,群体中抗体多样性保持较好,能快速跟踪不同环境的最优值,收敛性强。    

2.  动态免疫优化算法及其在背包问题中的应用  
   钱淑渠  武慧虹  涂歆《计算机工程》,2011年第37卷第20期
   利用人工免疫系统的学习、记忆、识别等功能,提出一种动态免疫优化算法(DIOA),用于解决一类高维动态约束优化问题。其中对可行抗体进行克隆突变操作,非可行抗体按价值密度使用贪婪算法进行修正,环境识别模块借助记忆细胞产生新的环境初始群,从而加快算法收敛速度。利用DIOA求解不同环境下的高维背包问题,结果表明,与同类算法相比,该算法能更快地跟踪最优值,收敛效果更好。    

3.  混沌系统动态多目标免疫优化算法及其应用  
   钱淑渠  武慧虹《计算机仿真》,2009年第26卷第6期
   生物免疫系统的自适应学习、免疫记忆、抗体多样性及动态平衡维持等功能,提出一种动态多目标免疫优化算法处理动态多目标优化问题.算法设计中,Logistic映射产生混沌抗体群;利用抗体的被控度和抗体拥挤距离设计抗体的亲和力;借助控制概念将群体分为非控群和被控群,再分别对其施行不同方式的突变增强群体的多样性;利用免疫记忆、Averagelinkage聚类方法,设计外部集和记忆集分别保存非控个体和亲和力较高抗体,所获的记忆细胞参与相似或相同环境初始抗体群的生成;借助三种不同类型的动态多目标优化测试问题,通过与两种最新的动态多目标进化算法及一种动态多目标克隆选择算法比较,数值实验论证了所提出算法在动态跟踪Pareto面的速度和执行效果上较其它算法优越.    

4.  动态多目标免疫算法及其应用  
   钱淑渠  武慧虹《计算机工程》,2012年第38卷第10期
   基于生物免疫系统的机理及功能,提出一种动态多目标免疫算法。利用抗体的被控度及浓度设计抗体的亲和力。用环境记忆池保存优秀抗体,并依抗体浓度更新。记忆细胞参与相似或相同环境初始抗体群的生成。借助动态多目标测试问题,与同类算法仿真比较,结果表明,该算法较其他算法表现出更好的性能,能快速跟踪动态Pareto面且分布均匀,具有较强的求解实际动态问题的能力。    

5.  自适应免疫算法及其对动态函数优化的跟踪  被引次数:2
   张著洪  钱淑渠《模式识别与人工智能》,2007年第20卷第1期
   基于生物免疫系统的自适应学习、记忆、监视等功能,设计适用于高维动态函数优化的自适应免疫算法.算法设计中,利用抗体的学习功能设计抗体动态进化模块;利用基因漂移促成抗体群中非优越抗体重构;利用记忆特性和记忆池动态维持功能,设计由记忆子集合构成的动态记忆池,并经由Average linkage保存优秀的记忆细胞;利用动态监视功能建立环境判别规则和初始抗体群的生成规则.该算法结构简单、灵活,以及在不同环境下寻优时间可以动态调节.数值实验比较显示出其优越性和在执行效率、执行效果中寻求权衡的有效性,并且对复杂的高维动态环境优化问题具有较大应用潜力.    

6.  动态多目标免疫优化算法及性能测试研究  
   钱淑渠  张著洪《智能系统学报》,2007年第2卷第5期
   基于生物免疫系统的自适应学习、免疫记忆、抗体多样性及动态平衡维持等功能,提出一种动态多目标免疫优化算法处理动态多目标优化问题.算法设计中,依据自适应ξ邻域及抗体所处位置设计抗体的亲和力,基于Pareto控制的概念,利用分层选择确定参与进化的抗体,经由克隆扩张及自适应高斯变异,提高群体的平均亲和力,利用免疫记忆、动态维持和Average linkage聚类方法,设计环境识别规则和记忆池,借助3种不同类型的动态多目标测试问题,通过与出众的动态环境优化算法比较,数值实验表明所提出算法解决复杂动态多目标优化问题具有较大潜力.    

7.  一种基于免疫原理求解TSP问题的模型  被引次数:6
   蒋亚平  李涛  梁刚  徐春林  黄雪梅  王铁方《计算机工程》,2006年第32卷第15期
   基于人工免疫原理,建立了一个基于免疫机制求解TSP问题的数学模型。在该模型中,定义了TSP问题中的抗原和抗体,描述了记忆细胞动态进化过程,并借鉴遗传算法中基因变异思想,提出了优势基因进化的GFE算法,结合生物免疫系统抗体浓度稳定原理,在克隆选择过程中实现了抗体集合的进化计算,快速有效地求解出问题的全局近似最优解。实验结果表明该算法对解决组合优化问题不仅可行,而且有较快的收敛速度和较强的全局搜索能力。    

8.  改进的免疫优化算法对动态约束多目标问题的应用  
   武慧虹 钱淑渠 高忠生《计算机应用与软件》,2014年第4期
   基于进化理论的动态多目标优化算法极易陷入局部最优,跟踪动态Pareto有效面的速度及效果较差。基于免疫系统机理提出一种改进的免疫优化算法(DMIOA)用于动态约束多目标问题求解。算法通过抗体浓度及其支配度设计抗体与抗原亲和力,随机约束选择算子提高算法约束处理能力,环境识别算子自适应判断环境变化,根据识别结果以不同的方式产生新环境的初始抗体群。数值实验中,将DMIOA应用于两种动态标准测试问题及飞机减速器参数动态设计问题的求解,结果表明:DMIOA能快速跟踪动态Pareto有效面,且在各环境所获面分布均匀,具有较好的实际问题求解能力。    

9.  一种基于动态识别邻域的免疫网络分类算法及其性能分析  
   邓泽林  谭冠政  何锫  李峰《电子与信息学报》,2015年第37卷第5期
   针对传统免疫网络分类算法在记忆细胞确定上缺乏有效的指导,该文提出一种基于动态识别邻域的免疫网络分类算法.算法采用核函数表示机制来描述抗体-抗原之间的亲和度;利用抗原对构造动态识别邻域来指导抗体群体的进化,并选择邻域中距离对偶抗原最近的抗体为记忆细胞.算法被应用于多分类问题及高维分类问题来进行算法性能分析,同时,算法被应用于多个标准数据集的分类来评估算法的整体性能.分类结果表明该算法对于标准测试数据集有良好的分类性能,这说明基于动态识别邻域的训练方法能够有效地指导记忆细胞的生成,显著地改善分类器的性能.    

10.  改进的克隆选择算法与SPEA相结合的进化算法  
   杨观赐  马鑫  李少波  钟勇  于丽娅《四川大学学报(工程科学版)》,2011年第43卷第5期
   为了使进化过程中子代的繁殖能够像生物繁殖那样继承进化信息,通过挖掘抗体中优秀决定基并生成记忆集、增加高斯变异、用变异抗体群中亲和度高的抗体按概率替换记忆抗体群中低亲和度抗体等策略,提出了一种改进的克隆选择算法(ICSA)。将ICSA与SPEA相结合,形成了一种改进的克隆选择算法与强度Pareto进化算法相结合的新型的进化算法(ICSA-SPEA)。ICSA-SPEA通过克隆选择替代选择、交叉、重组等遗传操作。用一组多目标0/1背包问题测试算法性能的统计结果表明,改进的算法可以有效保持种群多样性,具有良好的收敛精度与准确度。    

11.  一种新的自适应免疫进化算法  
   何宏  钱锋《信息与控制》,2007年第36卷第1期
   根据生物免疫系统的免疫网络调节机理,提出了一种新的自适应免疫进化算法.该算法按照抗体激励水平进行选择操作;同时建立优秀抗体记忆库,并采用种群自适应调节策略,保持了进化抗体群的多样性.试验表明,该算法比标准遗传算法的收敛性能好,能有效避免遗传算法种群多样性保持能力不足和早收敛的缺点.    

12.  基于小生境免疫遗传算法的硅钢片优化排样  
   吴斯  曹炬《计算机工程》,2008年第34卷第10期
   提出一种基于小生境免疫遗传算法的多级序列优化方法,并解决硅钢片优化排样问题。以免疫算法为基础,通过遗传算法进化抗体群,利用小生境技术保持抗体群的多样性。遗传算子和免疫记忆策略加快了优良个体的产生,提高了算法的收敛速度。共享机制和克隆抑制策略提高了算法的全局搜索能力,有效地避免早熟收敛现象。实际生产数据排样结果表明,该算法是有效、可行的。    

13.  基于Pareto的多目标进化免疫算法*  被引次数:2
   陶媛  吴耿锋  胡珉《计算机应用研究》,2009年第26卷第5期
   提出一种新的基于Pareto多目标进化免疫算法(PMEIA)。算法在每一代进化群体中选取最优非支配抗体保存到记忆细胞文档中;同时引入Parzen 窗估计法计算记忆细胞的熵值,根据熵值对记忆细胞文档进行动态更新,使算法向着理想Pareto最优边界搜索。此外,算法基于点在目标空间分布情况进行克隆选择,有利于得到分布较广的Pareto最优边界,且加快了收敛速度。与已有算法相比,PMEIA在收敛性、多样性,以及解的分布性方面都得到很好的提高。    

14.  求解多峰函数优化问题的免疫量子进化算法  被引次数:1
   游晓明  刘升  帅典勋《石油化工高等学校学报》,2007年第20卷第3期
   提出了一种求解多峰函数优化问题的免疫量子进化算法,该算法依据小生境机制将量子表达的初始种群划分为子群组,再对每个子群组利用免疫特性的局域搜索能力包括抗体的克隆选择、记忆细胞产生、免疫细胞交叉变异、抗体的促进与抑制等进化机制,找出局域最优解。最终算法可保持所有优化解。算法综合了量子计算的天然并行性和免疫算法的充分自适应性,它比传统的进化算法具有更好的种群多样性,更快的收敛速度,更有效的全局和局域寻优能力;证明了算法的收敛性,最后通过仿真实验表明了该算法的优越性。    

15.  一种并行免疫进化策略算法研究  被引次数:1
   程博  郭振宇  王军平  曹秉刚《控制与决策》,2007年第22卷第12期
   基于克隆选择原理,提出一种自适应并行免疫进化策略.在算法中根据抗体抗原亲和度将初始抗体种群分为两个子群,相应地提出了精英克隆算子和超变异算子.通过精英克隆算子提高算法局部搜索能力,同时利用超变异算子维持种群多样性,通过这两个功能互补算子的并行操作实现种群进化.仿真表明,自适应并行免疫进化策略搜索效率高,能有效抑制早熟收敛现象,可用于解决复杂机器学习问题.    

16.  一种用于求解0-1背包问题的动态伸缩算法  
   拓守恒  周涛《计算机工程与应用》,2012年第48卷第4期
   针对0-1背包这个非确定多项式(NP)完全难题,提出一种新的启发式搜索算法来解决0-1背包问题。算法采用多维实数编码,将物品按价值/重量比从大到小排序装包,通过用启发式策略选择交换背包内和背包外物品的位置,采用动态伸缩策略调整背包大小,选取种群中部分优秀解进入下一代继续进行优化。通过5个背包实例进行测试,实验结果表明该算法收敛速度快、求解精度高,并且具有良好的稳定性。    

17.  一种免疫记忆动态克隆策略算法  被引次数:4
   刘若辰  贾建  赵梦玲  焦李成《控制理论与应用》,2007年第24卷第5期
   基于对克隆选择及免疫记忆动态过程的模拟,本文提出了一种人工智能算法,免疫记忆动态克隆策略算法,该算法模拟免疫系统的自我调节、记忆学习、自适应等机制,实现全局优化计算与局部优化计算机制的有机的结合,通过抗体与抗原的亲合度和抗体间亲合度的计算,促进和抑制抗体的产生,自适应地调节抗体群和记忆单元的克隆规模.理论分析证明该算法以概率1收敛,对多峰函数优化及货郎担问题的仿真试验表明,算法有效,而且具有全局搜索能力强,种群多样性好及收敛速度快等特点.    

18.  基于改进免疫遗传算法的交通信号优化控制  被引次数:1
   顾榕  曹立明  王小平《模式识别与人工智能》,2006年第19卷第3期
   阐述免疫遗传学的基本原理,对传统免疫遗传算法做了改进.模拟抗体两次应答抗原的机理,引入信息熵计算抗原间的亲和力,选择亲和力高且相似度低的抗体遗传到后代,运用细胞记忆机制保存优良抗体,并令记忆细胞参与进化,避免算法陷入局部最优值.在此基础上,提出一种更新的相位配时优化算法对交通信号控制问题进行探讨,并设计相应的仿真实验.对一个四相位单交叉路口的交通流进行建模和分析,实验结果验证该算法处理交通配时优化问题的可行性和有效性.    

19.  一种新的差分进化约束优化算法  被引次数:2
   刘若辰  焦李成  雷七峰  方玲芬《西安电子科技大学学报(自然科学版)》,2011年第38卷第1期
   对于约束优化问题,目前提出的差分进化算法大多采用罚函数法,但此方法对罚参数有很强的依赖性.基于此,把约束优化问题中的约束条件当作一个目标函数,从而把约束优化问题转化为有两个目标函数的多目标优化问题.借鉴多目标优化中的Pareto的概念,对种群中的个体规定等级,便于在优胜劣汰过程中确定选择概率.同时,在算法陷入局部最优时,采用一种不可行解替换机制来提高算法搜索能力.对13个标准测试问题的测试结果表明,与动态惩罚函数的进化算法、可行性规则的差分进化算法、采用随机排序的进化策略以及人工免疫响应约束进化策略相比,新算法在求解精度上均具有一定的优势.    

20.  抗体修正免疫算法对高维0/1背包问题的应用 *  被引次数:2
   庄中文  钱淑渠《计算机应用研究》,2009年第26卷第8期
   遗传算法极难处理高维约束优化问题, 故借鉴免疫系统机理, 提出一种抗体修正免疫算法解决一类高 维约束优化问题。该算法设计的关键在于抗体亲和力由抗体浓度及群体状态决定; 可行抗体被克隆、突变; 非 可行抗体的基因按价值密度由小到大逐一修正。选取两种已有的智能算法(ETGA、ISGA), 通过不同约束条件 下的高维0/1背包问题的仿真比较。结果表明,该算法较其他算法能更快地跟踪最优值, 具有较强的勘测和开 采能力。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号