共查询到15条相似文献,搜索用时 46 毫秒
1.
近年来,数据流挖掘越来越引起研究人员的关注,已逐渐成为许多领域有用的工具。如何利用有限的存储空间高效地挖掘出频繁模式已成为数据流挖掘的基本问题,具有很强的现实意义和理论价值。在论述数据流管理系统模型的基础上,深入分析了国内外的各种频繁模式挖掘算法,并指出这些算法的特点及其局限性。最后对未来的研究方向进行了展望。 相似文献
2.
近年来,数据流挖掘越来越引起研究人员的关注,已逐渐成为许多领域有用的工具。如何利用有限的存储空间高效地挖掘出频繁模式已成为数据流挖掘的基本问题,具有很强的现实意义和理论价值。在论述数据流管理系统模型的基础上,深入分析了国内外的各种频繁模式挖掘算法,并指出这些算法的特点及其局限性。最后对未来的研究方向进行了展望。 相似文献
3.
《数字社区&智能家居》2008,(Z2)
介绍了数据流的定义和特点及数据流频繁模式的基本概念。针对数据流的特性,讨论分析了目前国内外数据流频繁模式挖掘算法、算法特性及应用情况,最后展望了数据流频繁模式挖掘的进一步研究工作。 相似文献
4.
发现数据流中的频繁项是数据流挖掘中最基本的问题之一.数据流的无限性和流动性使得传统的频繁模式挖掘算法难以适用.针对数据流的特点,在借鉴FP-growth算法的基础上,提出了一种数据流频繁模式挖掘的新方法:FP-DS算法.算法采用数据分段的思想,逐段挖掘频繁项集,用户可以连续在线获得当前的频繁项集,可以有效地挖掘所有的频繁项集,算法尤其适合长频繁项集的挖掘.通过引入误差ε,裁减了大量的非频繁项集,减少了数据的存储量,也能保证整个数据集中项目集支持度误差不超过ε. 分析和实验表明算法有较好的性能. 相似文献
5.
数据流的无限性、高速性使得经典的频繁模式挖掘方法难以适用到数据流中。针对数据流的特点,对数据流中频繁模式挖掘问题进行了研究,提出了数据流频繁模式挖掘算法FP-SegCount。该算法将数据流分段并利用改进的FP-growth算法挖掘分段中的频繁项集,然后利用Count-Min Sketch进行项集计数。算法解决了压缩统计和计算快速高效的问题。通过实验分析,FP-SegCount算法是有效的。 相似文献
6.
在介绍数据流的基本特点以及数据流频繁挖掘意义的基础上,对现有主要的数据流频繁挖掘算法进行了总结,指出了这些方法的局限性,并对进一步的研究进行了展望。 相似文献
7.
挖掘滑动窗口中的数据流频繁模式 总被引:2,自引:0,他引:2
随着数据流应用的不断增多,数据流环境下的数据挖掘技术受到了越来越多的关注.文章结合数据流的特点,提出一种新的基于滑动窗口的频繁模式挖掘算法:DSFPM.算法分块挖掘数据流,在内存中维持一个用于保存所有潜在的频繁模式信息的存储结构DSFPM-Tree,并在各个基本窗口进入滑动窗口后动态更新该存储结构.算法仅处理和保存各个基本窗口的临界频繁闭合项集,极大地提高了时间和空间效率.实验结果表明,该算法具有良好的性能. 相似文献
8.
频繁模式挖掘是数据流挖掘中的重要研究课题. 针对数据流的时效性和流中心的偏移性特点, 提出了界标窗口模型与时间衰减模型相结合的数据流频繁模式挖掘算法. 该算法通过动态构建全局模式树, 利用时间指数衰减函数对模式树中各模式的支持数进行统计, 以此刻画界标窗口内模式的频繁程度; 进而, 为有效降低空间开销, 设计了剪枝阈值函数, 用于对预期难以成长为频繁的模式及时从全局树中剪除. 本文对出现在算法中的重要参数和阈值进行了深入分析. 一系列实验表明, 与现有同类算法MSW相比, 该算法挖掘精度高(平均超过90%), 内存开销小, 速度上可以满足高速数据流的处理要求, 且可以适应不同事务数量、不同事务平均长度和不同最大潜在频繁模式平均长度的数据流频繁模式挖掘. 相似文献
9.
作为数据流挖掘的一个重要研究问题,滑动窗口下的数据流频繁模式挖掘近年来得到了广泛应用和研究。已有的算法大多要对数据流中所有的数据都进行处理,而现实中用户往往只关注事物的某些方面,由此借鉴MFI-TransSW算法,提出了一种基于事务型滑动窗口的算法BSW-Filter(Bit Sliding Window with Filter)。算法采用比特序列实现滑动窗口操作,同时由于增加了频繁项的筛选,减少了所需保存的数据项个数,从而减小了内存使用和提升处理速度。算法的空间复杂度与滑动窗口大小以及数据流取值范围无关,特别适用于周期较长数据范围广的数据挖掘。分析和实验验证了该算法的可行性和有效性。 相似文献
10.
一些先进应用如欺诈检测和趋势学习等带来了数据流频繁模式挖掘的发展。不同于静态数据,数据流挖掘面临着时空约束和项集组合爆炸等问题。对已有数据流频繁模式挖掘算法进行综述并对经典和最新算法进行分析。按照模式集合的完整程度进行分类,数据流中频繁模式分为全集模式和压缩模式。压缩模式主要包括闭合模式、最大模式、top-k模式以及三者的组合模式。不同之处是闭合模式是无损压缩的,而其他模式是有损压缩的。为了得到有趣的频繁模式,可以挖掘基于用户约束的模式。为了处理数据流中的新近事务,将算法分为基于窗口模型和基于衰减模型的方法。数据流中模式挖掘常见的还包含序列模式和高效用模式,对经典和最新算法进行介绍。最后给出了数据流模式挖掘的下一步工作。 相似文献
11.
随着GPS定位技术的不断发展与智能移动设备的普及,轨迹数据的获取变得越来越容易,同时,轨迹数据相关应用的需求也逐渐增多.在轨迹数据上加入语义信息,可以得到体积较小、质量较高、能够更好地反映用户行为的语义轨迹,在其上实现旅游线路推荐、路线预测、用户生活模式挖掘、朋友推荐等应用,可以更好地满足用户需求.挖掘语义轨迹的频繁模式是实现这些应用的技术基础,而在很多情况下,用户对语义轨迹频繁模式常存在到达时间方面的需求,比如按特定时间游玩热门景点的同时需要按时到达车站候车.现有的语义轨迹模式挖掘方法大多没有考虑到达时间的约束,挖掘出的频繁模式缺少到达时间信息;少数方法考虑了精确的到达时间,但因为约束太强会导致无法挖掘到频繁的模式.因此,首次对近似到达时间约束下的语义轨迹频繁模式(approximate arrival-time constrained frequent pattern,简称AAFP)挖掘方法进行了研究,并给出了其形式化定义;通过时间轴划分提出了挖掘AAFP的基线算法,并通过建立索引AAP-tree提出了改进后的高效、灵活的AAFP挖掘算法;之后提出了信息熵增量公式,并给出了时间轴划分及AAP-tree的高效维护方法;最后在真实数据集上进行实验,验证了方法的有效性及高效性. 相似文献
12.
数据流频繁项集挖掘是指在数据流中找出出现频数大于给定的最小支持度的项集过程。随着一些新兴应用如传感器网络、网络监控等的出现,数据流中频繁项集挖掘引起了很大的重视。提出了一种新颖的数据流频繁项集挖掘算法RFIF。不同于现有算法,RFIF算法针对现实中的一些实际应用,更多的考虑最近时间发生的事件,但也不完全抛弃历史数据,通过引入GIMT函数,逐渐加大项集支持度的阈值,减少对历史数据中频繁项集的维护。实验验证了算法的有效性。 相似文献
13.
随着通信技术和硬件设备的不断发展,尤其是小型无线传感设备的广泛应用,数据采集和生成技术变得越来越便捷和趋于自动化,研究人员正面临着如何管理和分析大规模动态数据集的问题。能够产生数据流的领域应用已经非常普通,例如传感器网络、金融证券管理、网络监控、Web日志以及通信数据在线分析等新型应用。这些应用的特征是环境配备有多个分布式计算节点;这些节点往往临近于数据源;分析和监控这种环境下的数据,往往需要对挖掘任务、数据分布、数据流入速率和挖掘方法有一定的了解。综述了分布式数据流挖掘的当前进展概况,并展望了未来可能的、潜在的专题研究方向。 相似文献
14.
面向数据流的频繁项集挖掘研究 总被引:1,自引:0,他引:1
孟彩霞 《计算机工程与应用》2010,46(24):138-140
针对数据流的特点,对数据流中频繁模式挖掘问题进行了研究,提出了数据流频繁项集挖掘算法FP-SegCount。该算法将数据流分段并利用改进的FP-growth算法挖掘分段中的频繁项集。然后,利用Count Min Sketch进行项集计数。算法解决了压缩统计和计算快速高效的问题。通过和FP-DS算法的实验对比,FP-SegCount算法具有较好的时间效率。 相似文献
15.
A data stream is a massive, open-ended sequence of data elements continuously generated at a rapid rate. Mining data streams is more difficult than mining static databases because the huge, high-speed and continuous characteristics of streaming data. In this paper, we propose a new one-pass algorithm called DSM-MFI (stands for Data Stream Mining for Maximal Frequent Itemsets), which mines the set of all maximal frequent itemsets in landmark windows over data streams. A new summary data structure called summary frequent itemset forest (abbreviated as SFI-forest) is developed for incremental maintaining the essential information about maximal frequent itemsets embedded in the stream so far. Theoretical analysis and experimental studies show that the proposed algorithm is efficient and scalable for mining the set of all maximal frequent itemsets over the entire history of the data streams. 相似文献