首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, an adaptive decentralized tracking control scheme is designed for large‐scale nonlinear systems with input quantization, actuator faults, and external disturbance. The nonlinearities, time‐varying actuator faults, and disturbance are assumed to exist unknown upper and lower bounds. Then, an adaptive decentralized fault‐tolerant tracking control method is designed without using backstepping technique and neural networks. In the proposed control scheme, adaptive mechanisms are used to compensate the effects of unknown nonlinearities, input quantization, actuator faults, and disturbance. The designed adaptive control strategy can guarantee that all the signals of each subsystem are bounded and the tracking errors of all subsystems converge asymptotically to zero. Finally, simulation results are provided to illustrate the effectiveness of the designed approach.  相似文献   

2.
This paper presents an approximation design for a decentralized adaptive output‐feedback control of large‐scale pure‐feedback nonlinear systems with unknown time‐varying delayed interconnections. The interaction terms are bounded by unknown nonlinear bounding functions including unmeasurable state variables of subsystems. These bounding functions together with the algebraic loop problem of virtual and actual control inputs in the pure‐feedback form make the output‐feedback controller design difficult and challenging. To overcome the design difficulties, the observer‐based dynamic surface memoryless local controller for each subsystem is designed using appropriate Lyapunov‐Krasovskii functionals, the function approximation technique based on neural networks, and the additional first‐order low‐pass filter for the actual control input. It is shown that all signals in the total controlled closed‐loop system are semiglobally uniformly bounded and control errors converge to an adjustable neighborhood of the origin. Finally, simulation examples are provided to illustrate the effectiveness of the proposed decentralized control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
This paper studies the coordination control problem of stabilizing large‐scale dynamically coupled systems via a novel event‐triggered distributed model predictive control (DMPC) approach. In order to achieve global performance, certain constraints relevant to the triggering instant are imposed on the DMPC optimization problem, and triggering mechanisms are designed by taking into account coupling influences. Specifically, the triggering conditions derived from the feasibility and stability analysis are based on the local subsystem state and the information received from its neighbors. Based on these triggering mechanisms, the event‐triggered DMPC algorithm is built, and a dual‐mode strategy is adopted. As a result, the controllers solve the optimization problem and coordinate with each other asynchronously, which reduces the amount of communication and lowers the frequency of controller updates while achieving global performance. The recursive feasibility of the proposed event‐triggered DMPC algorithm is proved, and sufficient parameter conditions about the prediction horizon and the triggering threshold are established. It shows that the system state can be gradually driven into the terminal set under the proposed strategy. Finally, an academic example and a realistic simulation problem to the water level of a 4‐tank system are provided to verify the effectiveness of the proposed algorithm.  相似文献   

4.
In this paper, a low‐complexity robust estimation‐free decentralized prescribed performance control scheme is proposed and analyzed for nonaffine nonlinear large‐scale systems in the presence of unknown nonlinearity and external disturbance. To tackle the high‐order dynamics of each tracking error subsystem, a time‐varying stable manifold involving the output tracking error and its high‐order derivatives is constructed, which is strictly evolved within the envelope of user‐specialized prescribed performance. Sequentially, a robust decentralized controller is devised for each manifold, under which the output tracking error and its high‐order derivatives are proven to converge asymptotically to a small residual domain with prescribed fast convergence rate. Additionally, no specialized approximation technique, adaptive scheme, and disturbance observer are needed, which alleviates the complexity and difficulty of robust decentralized controller design dramatically. Finally, 3 groups of illustrative examples are used to validate the effectiveness of the proposed low‐complexity robust decentralized control scheme for uncertain nonaffine nonlinear large‐scale systems.  相似文献   

5.
This paper studies a Lyapunov‐based small‐gain approach on design of triggering conditions in event‐triggered control systems. The event‐triggered control closed‐loop system is formulated as a hybrid system model. Firstly, by viewing the event‐triggered control closed‐loop system as a feedback connection of two smaller hybrid subsystems, the Lyapunov‐based small‐gain theorems for hybrid systems are applied to design triggering conditions. Then, a new class of triggering condition, the safe, adjustable‐type triggering condition, is proposed to tune the parameters of triggering conditions by practical regulations. This is conducive to break the restriction of the conservation of theoretical results and improve the practicability of event‐triggered control strategy. Finally, a numerical example is given to illustrate the efficiency and the feasibility of the proposed results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Decentralized delay‐dependent local stability and resilient feedback stabilization methods are developed for a class of linear interconnected continuous‐time systems. The subsystems are time‐delay plants which are subjected to convex‐bounded parametric uncertainties and additive feedback gain perturbations while allowing time‐varying delays to occur within the local subsystems and across the interconnections. The delay‐dependent local stability conditions are established at the subsystem level through the construction of appropriate Lyapunov–Krasovskii functional. We characterize decentralized linear matrix inequalities (LMIs)‐based delay‐dependent stability conditions by deploying an injection procedure such that every local subsystem is delay‐dependent robustly asymptotically stable with an γ‐level ??2‐gain. Resilient decentralized state‐feedback stabilization schemes are designed, which takes into account additive gain perturbations such that the family of closed‐loop feedback subsystems enjoys the delay‐dependent asymptotic stability with a prescribed γ‐level ??2‐gain for each subsystem. The decentralized feedback gains are determined by convex optimization over LMIs. All the developed results are tested on representative examples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, a decentralized event‐based triggering mechanism for a class of nonlinear control systems is studied. It is assumed that the measurement sensors are geographically distributed and so local event generator modules are employed. Then, a novel periodic triggering condition is proposed for each module, which can potentially reduce the information exchange between subsystems compared with traditional control approaches, while maintaining closed‐loop asymptotic stability. The triggering condition parameters are designed through a convex optimization problem with LMI constraints. Finally, simulations are carried out to illustrate the performance of the introduced scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
In Large Scale Systems the concept of centrality fails due to the lack of centralized computing capability. The control of such systems has to be performed using multiple control agents. In this case, the matter of interactions among neighboring subsystems needs to be considered. In this paper, a water control system in the Netherlands is studied as a real large scale system. A multi‐agent scheme is applied to control the flow through the system which is decomposed into two interconnected subsystems. Each agent employs a model‐based predictive control (MPC) technique. The model of this large scale system is nonlinear and nonconvex. Therefore, an augmented Lagrangian pattern search optimization algorithm is used to implement multi‐agent MPC for this system. This proposed algorithm is applied by each control agent to solve its own interconnected optimization problem, at each subsystem of whole the water system. Simulation results show the effectiveness of the proposed approach.  相似文献   

9.
This paper considers discrete‐time large‐scale networked control systems with multiple local communication networks connecting sensors, controllers, and actuators. The local networks operate asynchronously and independently of each other in the presence of variable sampling intervals, transmission delays, and scheduling protocols (from sensors to controllers). The time‐delay approach that was recently suggested to decentralized stabilization of large‐scale networked systems in the continuous time is extended to decentralized control in the discrete time. An appropriate Lyapunov‐Krasovskii method is presented that leads to efficient LMI conditions for the exponential stability and l2‐gain analysis of the closed loop large‐scale system. Differences from the continuous‐time results are discussed. A numerical example of decentralized control of 2 coupled cart‐pendulum systems illustrates the efficiency of the results.  相似文献   

10.
In this paper, a general method is developed to generate a stable adaptive fuzzy semi‐decentralized control for a class of large‐scale interconnected nonlinear systems with unknown nonlinear subsystems and unknown nonlinear interconnections. In the developed control algorithms, fuzzy logic systems, using fuzzy basis functions (FBF), are employed to approximate the unknown subsystems and interconnection functions without imposing any constraints or assumptions about the interconnections. The proposed controller consists of primary and auxiliary parts, where both direct and indirect adaptive approaches for the primary control part are aiming to maintain the closed‐loop stability, whereas the auxiliary control part is designed to attenuate the fuzzy approximation errors. By using Lyapunov stability method, the proposed semi‐decentralized adaptive fuzzy control system is proved to be globally stable, with converging tracking errors to a desired performance. Simulation examples are presented to illustrate the effectiveness of the proposed controller. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
This paper investigates the periodic event‐triggered control problem for distributed networked multiagent systems with interconnected nonlinear dynamics subject to asynchronous communication. A method of state trajectory estimation for the interconnected neighboring agents over each prediction horizon with guaranteed error bounds is addressed to handle the asynchronous communication. Based on it, a distributed robust model predictive control (MPC) is proposed with a distributed periodic event‐triggered scheme for each agent. According to this algorithm, each subsystem generates presumed state trajectories for all its upstream neighbors and computes its own control locally. By checking the designed triggering condition periodically, the optimization problem of MPC will be implemented and solved when the local error of the subsystem exceeds a specified threshold. Then, the optimized control input will be determined and applied until the next time instant when the triggering condition is invoked. Moreover, sufficient condition for ensuring feasibility of the designed algorithm is conducted, along with the analysis of asymptotic stabilization of the closed‐loop system. The illustrative example for a set of coupled Van der Pol oscillators is reported to verify the effectiveness of the proposed approach.  相似文献   

12.
In this paper, we investigate global decentralized sampled‐data output feedback stabilization problem for a class of large‐scale nonlinear systems with time‐varying sensor and actuator failures. The considered systems include unknown time‐varying control coefficients and inherently nonlinear terms. Firstly, coordinate transformations are introduced with suitable scaling gains. Next, a reduced‐order observer is designed to estimate unmeasured states. Then, a decentralized sampled‐data fault‐tolerant control scheme is developed with an allowable sampling period. By constructing an appropriate Lyapunov function, it can be shown that all states of the resulting closed‐loop system are globally uniformly ultimately bounded. Finally, the validity of the proposed control approach is verified by using two examples.  相似文献   

13.
In this paper, we deal with the problems of mode‐dependent decentralized stability and stabilization with ?? performance for a class of continuous‐time interconnected jumping time‐delay systems. The jumping parameters are governed by a finite state Markov process and the delays are unknown time‐varying and mode‐dependent within interval. The interactions among subsystems satisfy quadratic bounding constraints. To characterize mode‐dependent local stability behavior, we employ an improved Lyapunov–Krasovskii functional at the subsystem level and express the stability conditions in terms of linear matrix inequalities (LMIs). A class of local decentralized state‐feedback controllers is developed to render the closed‐loop interconnected jumping system stochastically stable. Then, we extend the feedback strategy to dynamic observer‐based control and establish the stochastic stabilization via LMIs. It has been established that the developed results encompass several existing results as special cases which are illustrated by simulation of examples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
We are concerned with the consensus problem for a class of uncertain nonlinear multi‐agent systems (MASs) connected through an undirected communication topology via event‐triggered approaches in this paper. Two distributed control strategies, the adaptive centralized event‐triggered control one and adaptive distributed event‐triggered control one, are presented utilizing neural networks (NNs) and event‐driven mechanisms, where the advantages of the proposed control laws lie that they remove the requirement for exact priori knowledge about parameters of individual agents by taking advantage of NNs approximators and they save computing and communication resources since control tasks only execute at certain instants with respect to predefined threshold functions. Also, the trigger coefficient can be regulated adaptively with dependence on state errors to ensure not only the control performance but also the efficiency of the network interactions. It is proven that all signals in the closed‐loop system are bounded and the Zeno behavior is excluded. Finally, simulation examples are presented for illustration of the theoretical claims.  相似文献   

15.
This paper is concerned with the event‐triggered control problem for a class of strict feedback nonlinear networked systems. Different from the existing design methods, a novel user‐adjustable event‐triggered mechanism is first developed to determine the sampling state instants using the negative definite property of the derivatives of Lyapunov functions. Then, an event‐triggered control strategy is devised based on the sampled state vectors and backstepping techniques. It is proved that the proposed control scheme ensures the global convergence of the closed‐loop systems via Lyapunov analyses and the correlation criteria of real variable functions. Finally, two examples are performed to illustrate the effectiveness of the provided control approaches.  相似文献   

16.
This paper considers the distributed event‐triggered consensus problem for multi‐agent systems with general linear dynamics under undirected graphs. Based on state feedback, we propose a novel distributed event‐triggered consensus controller with state‐dependent threshold for each agent to achieve consensus, without continuous communication in either controller update or triggering condition monitoring. Each agent only needs to monitor its own state continuously to determine if the event is triggered. It is proved that there is no Zeno behavior under the proposed consensus control algorithm. To relax the requirement of the state measurement of each agent, we further propose a novel distributed observer‐based event‐triggered consensus controller to solve the consensus problem in the case with output feedback and prove that there is no Zeno behavior exhibited. Finally, simulation results are given to illustrate the theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, the decentralized adaptive neural network (NN) output‐feedback stabilization problem is investigated for a class of large‐scale stochastic nonlinear strict‐feedback systems, which interact through their outputs. The nonlinear interconnections are assumed to be bounded by some unknown nonlinear functions of the system outputs. In each subsystem, only a NN is employed to compensate for all unknown upper bounding functions, which depend on its own output. Therefore, the controller design for each subsystem only need its own information and is more simplified than the existing results. It is shown that, based on the backstepping method and the technique of nonlinear observer design, the whole closed‐loop system can be proved to be stable in probability by constructing an overall state‐quartic and parameter‐quadratic Lyapunov function. The simulation results demonstrate the effectiveness of the proposed control scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
This paper proposes an adaptive algorithm for the online control of discrete‐time large‐scale nonlinear systems, which reduces the noise effects acting on the system output (regulation problem) and allows the system output to keep track of a time‐varying trajectory (tracking problem). We consider a large‐scale nonlinear system that can be decomposed into single‐input single‐output (SISO) interconnected nonlinear subsystems with known structure variables (orders, delays) and unknown time‐varying parameters. Each interconnected subsystem is described by block‐oriented models, specifically a discrete‐time Hammerstein model. Parameter adaptation is performed using a recursive parametric estimation algorithm based on the adjustable model method and the least squares techniques. Simulation results of an interconnected petroleum process are provided to demonstrate the effectiveness of the developed control scheme.  相似文献   

19.
This paper proposes a control architecture that employs event‐triggered control techniques to achieve output synchronization of a group of heterogeneous linear time‐invariant agents. We associate with each agent an event‐triggered output regulation controller and an event‐triggered reference generator. The event‐triggered output regulation controller is designed such that the regulated output of the agent approximately tracks a reference signal provided by the reference generator in the presence of unknown disturbances. The event‐triggered reference generator is responsible for synchronizing its internal state across all agents by exchanging information through a communication network linking the agents. We first address the output regulation problem for a single agent where we analyze two event‐triggered scenarios. In the first one, the output and input event detectors operate synchronously, meaning that resets are made at the same time instants, while in the second one, they operate asynchronously and independently of each other. It is shown that the tracking error is globally bounded for all bounded reference trajectories and all bounded disturbances. We then merge the results on event‐triggered output regulation with previous results on event‐triggered communication protocols for synchronization of the reference generators to demonstrate that the regulated output of each agent converges to and remains in a neighborhood of the desired reference trajectory and that the closed‐loop system does not exhibit Zeno solutions. Several examples are provided to illustrate the advantages and issues of every component of the proposed control architecture. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This paper proposes a novel adaptive backstepping control method for parametric strict‐feedback nonlinear systems with event‐sampled state and input vectors via impulsive dynamical systems tools. In the design procedure, both the parameter estimator and the controller are aperiodically updated only at the event‐sampled instants. An adaptive event sampling condition is designed to determine the event sampling instants. A positive lower bound on the minimal intersample time is provided to avoid Zeno behavior. The closed‐loop stability of the adaptive event‐triggered control system is rigorously proved via Lyapunov analysis for both the continuous and jump dynamics. Compared with the periodic updates in the traditional adaptive backstepping design, the proposed method can reduce the computation and the transmission cost. The effectiveness of the proposed method is illustrated using 2 simulation examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号