首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
In this paper, we analyze H‐output regulation of linear heterogeneous multiagent systems. The agents are subject to modeled and unmodeled disturbances and communicate over a switching graph. We derive a sufficient condition that guarantees H output regulation for the mentioned setup. This sufficient condition places requirements on both the single‐agent systems and the switching graph. The requirement on the single‐agent systems is an H‐criterion that should be satisfied by a proper design of the controller. Meanwhile, the switching graph needs to be maximally connected. Moreover, we derive an upper bound for the overall ‐gain of the output synchronization error with respect to the unmodeled disturbances over a fixed communication graph. We illustrate our technical developments by a simulation example.  相似文献   

2.
Differential graphical games have been introduced in the literature to solve state synchronization problem for linear homogeneous agents. When the agents are heterogeneous, the previous notion of graphical games cannot be used anymore and a new definition is required. In this paper, we define a novel concept of differential graphical games for linear heterogeneous agents subject to external unmodeled disturbances, which contain the previously introduced graphical game for homogeneous agents as a special case. Using our new formulation, we can solve both the output regulation and H output regulation problems. Our graphical game framework yields coupled Hamilton‐Jacobi‐Bellman equations, which are, in general, impossible to solve analytically. Therefore, we propose a new actor‐critic algorithm to solve these coupled equations numerically in real time. Moreover, we find an explicit upper bound for the overall ‐gain of the output synchronization error with respect to disturbance. We demonstrate our developments by a simulation example.  相似文献   

3.
This paper investigates the issues of stochastic stability and extended dissipativity analysis for uncertain neutral systems with semi‐Markovian jumping parameters. A new criterion about the stochastic stability and extended dissipativity of uncertain neutral systems with semi‐Markovian jumping parameters is obtained based on the new Lyapunov‐Krasovskii functionals together with the introduced novel free matrix–based integral inequality. The major contribution of this study is that the stochastic stability and extended dissipativity concept for uncertain neutral systems with semi‐Markovian jumping parameters can be developed to simultaneously analyze the solutions of the L2 ? L performance, H action, passivity behavior, and dissipativity by selecting different weighting matrices. Finally, several interesting numerical examples are provided to show the effectiveness and less conservatism of the proposed method.  相似文献   

4.
This paper focuses on the problem of finite‐time H control for one family of discrete‐time uncertain singular Markovian jump systems with sensor fault and randomly occurring nonlinearities through a sliding mode approach. The failure of sensor is described as a general and practical continuous fault model. Nonlinear disturbance satisfies the Lipschitz condition and occurs in a probabilistic way. Firstly, based on the state estimator, the discrete‐time close‐loop error system can be constructed and sufficient criteria are provided to guarantee the augment system is sliding mode finite‐time boundedness and sliding mode H finite‐time boundedness. The sliding mode control law is synthesized to guarantee the reachability of the sliding surface in a short time interval, and the gain matrices of state feedback controller and state estimator are achieved by solving a feasibility problem in terms of linear matrix inequalities through a decoupling technique. Finally, numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

5.
This paper proposes a robust H‐based adaptive backstepping control scheme for the output stabilization of a special class of cascaded nonlinear systems. This kind of systems possess the feature that the first sub‐equation is a linear perturbed system, whereas the rest ones perform a general semi‐strict feedback form. Different from the conventional backstepping design approach, the special cascaded structure ensures to introduce the H technique to the backstepping procedure such that both the robust performance and the robust stability can be simultaneously guaranteed. Within the Lyapunov framework, the proposed control scheme is proved to guarantee (i) the uniformly ultimate boundedness of the system signals with a bound that can be made arbitrarily small by suitably choosing control parameters; (ii) asymptotic output stabilization as long as the uncertain nonlinearities and external disturbances vanish; and (iii) ‐performance of the closed‐loop system. A space interception scenario is utilized to demonstrate the effectiveness of the proposed control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
This article addresses a novel technique for the simultaneous design of a robust nonlinear controller and static anti‐windup compensator (AWC) for uncertain nonlinear systems under actuator saturation and exogenous bounded input. The system is presumed to have locally Lipschitz nonlinearities, time‐varying uncertainties (appearing both in the linear as well as nonlinear dynamics and both in the state in addition to the output equations), and external norm‐bounded inputs both in the state and the output equations. Several bilinear matrix inequality–based conditions are derived to simultaneously design the robust nonlinear controller and AWC gains for uncertain nonlinear systems by employing the Lyapunov functional, reformulated Lipschitz property, uncertainty bounds, linear parameter‐varying approach, modified local and global sector conditions, iterative linear matrix inequality algorithm, convex optimization procedure, and gain minimization. The proposed multiobjective AWC‐based dynamic robust nonlinear controller guarantees the mitigation of saturation effects, robustness against time‐varying parametric norm‐bounded uncertainties, the asymptotic stability of the closed‐loop nonlinear system under zero external disturbances, and the attenuation of disturbance effects under nonzero external disturbances. The effectiveness of the proposed AWC‐based dynamic robust nonlinear controller synthesis scheme is illustrated by simulation examples.  相似文献   

7.
Robust control of parameter‐dependent input delay linear parameter‐varying (LPV) systems via gain‐scheduled dynamic output‐feedback control is considered in this paper. The controller is designed to provide disturbance rejection in the context of the induced ‐norm or the norm of the closed‐loop system in the presence of uncertainty and disturbances. A reciprocally convex approach is employed to bound the Lyapunov‐Krasovskii functional derivative and extract sufficient conditions for the controller characterization in terms of linear matrix inequalities (LMIs). The approach does not require the rate of the delay to be bounded, hence encompasses a broader family of input‐delay LPV systems with fast‐varying delays. The method is then applied to the air‐fuel ratio (AFR) control in spark ignition (SI) engines where the delay and the plant parameters are functions of the engine speed and mass air flow. The objectives are to track the commanded AFR signal and to optimize the performance of the three‐way catalytic converter (TWC) through the precise AFR control and oxygen level regulation, resulting in improved fuel efficiency and reduced emissions. The designed AFR controller seeks to provide canister purge disturbance rejection over the full operating envelope of the SI engine in the presence of uncertainties. Closed‐loop simulation results are presented to validate the controller performance and robustness while meeting AFR tracking and disturbance rejection requirements.  相似文献   

8.
This paper is devoted to the robust sliding mode control issue for a type of switched discrete singular systems with time‐varying delays under arbitrary switching. Since the system states are not available, the nonfragile observer strategy is used to generate the state estimation. By designing a novel sliding surface function, which is established on the estimation, new sufficient conditions via linear matrix inequalities are derived so that the closed‐loop system is admissible with an disturbance attenuation level γ. Furthermore, sliding mode controllers are given to guarantee the reachability of the quasi‐sliding mode and weaken the chattering. At last, examples are presented to verify the validity of our provided approach.  相似文献   

9.
Our problem of interest is to minimize a sequence of scalar‐valued loss functions fk(·) or to locate the root(s) of a sequence of vector‐valued functions g k(·) corresponding to time with respect to a parameter . The available information for the minimization/root‐finding is the noise‐corrupted observation(s) of either fk(·) or g k(·) evaluated at a few of certain design points only. Taking both the dynamics and randomness into consideration, we use stochastic approximation (SA) algorithms to solve the time‐varying problem, but with a nondecaying gain (stepsize). The tracking performance of the nondecaying gain SA algorithm is guaranteed by a computable bound for the root‐mean‐squared error and mean‐absolute‐deviation. The only assumption imposed on the drifts is that the average distance between two consecutive underlying true parameters is bounded from above—this assumption allows the varying target to change abruptly. The error term arising from using the noisy evaluation of fk(·) or g k(·) in constructing the search direction is assumed to have bounded second‐moment—this allows for biased estimator to be used in the SA algorithms. Given the lenient assumptions on the drift and error term, the error bounds apply to a broad class of time‐varying scenarios and are useful for finite‐sample analysis. Since the tracking capability characterizes the average performance across all possible sample paths, it may not provide much guidance on the gain‐tuning strategies useful for one single run. Hence, we propose a data‐dependent gain‐tuning strategy based on estimating the Hessian information and the noise level. The adaptive rule is advantageous as it enables the step size to vary with information gathered during the progress of the estimation procedure.  相似文献   

10.
This article focuses on the stability and stabilization problems of singularly perturbed jump systems. Here, the singularly perturbed parameter (SPP) is also with Markov switching and satisfies any with positive bound predefined. First, stability conditions expressed ?i‐free but involving its bound are developed by constructing an ?i‐dependent Lyapunov function. Then, a method for state feedback stabilization controller depending on SPP is proposed, whose conditions are given in terms of linear matrix inequalities. Moreover, some special cases about deterministic SPP are considered too. Finally, two practical examples are used to demonstrate the effectiveness and superiorities of the proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号