首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
This paper investigates the problem of state observer design for a class of nonlinear uncertain dynamical systems with interval time‐varying delay and the one‐sided Lipschitz condition. By constructing the novel Lyapunov–Krasovskii functional while utilizing the free‐weighting matrices approach, the one‐sided Lipschitz condition and the quadratic inner‐bounded condition, novel sufficient conditions, which guarantee the observer error converge asymptotically to zero, are established for a class of nonlinear dynamical systems with interval time‐varying delay in terms of the linear matrix inequalities. The computing method for observer gain matrix is given. Finally, two examples illustrate the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This paper investigates the H observer design problem for a class of nonlinear discrete‐time singular systems with time‐varying delays and disturbance inputs. The nonlinear systems can be rectangular and the nonlinearities satisfy the one‐sided Lipschitz condition and quadratically inner‐bounded condition, which are more general than the traditional Lipschitz condition. By appropriately dealing with these two conditions and applying several important inequalities, a linear matrix inequality–based approach for the nonlinear observer design is proposed. The resulting nonlinear H observer guarantees asymptotic stability of the estimation error dynamics with a prescribed performance γ. The synthesis condition of H observer design for nonlinear discrete‐time singular systems without time delays is also presented. The design is first addressed for one‐sided Lipschitz discrete‐time singular systems. Finally, two numerical examples are given to show the effectiveness of the present approach.  相似文献   

3.
This paper discusses the observer‐based finite‐time stabilization for discrete‐time switched singular systems with quadratically inner‐bounded nonlinear terms. Firstly, based on the Luenberger‐like observer, by using the average dwell time approach, sufficient conditions are proposed to make closed‐loop systems be regular, be causal, as having a unique solution, and be uniformly finite‐time bounded. Then, a new linear matrix inequality sufficient condition for the existence of an observer‐based controller is obtained by using certain matrix decoupling techniques, and the controller is designed. In this paper, the conditions proposed not only give the observer‐based controller design methods but also guarantee the existence and uniqueness of solution for the systems. Since the quadratically inner‐bounded nonlinearities are more general than Lipschitz nonlinearities and one‐sided Lipschitz nonlinearities, compared with previous works, the proposed controller design methods in this paper are also more general than the existing ones. Finally, numerical examples are provided to illustrate the effectiveness of the methods proposed in this paper.  相似文献   

4.
This article investigates the finite‐time output feedback stabilization problem for a class of nonlinear time‐varying delay systems in the p‐normal form. First, a reduced‐order state observer is designed to estimate the unmeasurable state. Then, an output feedback controller is constructed, with the help of the finite‐time Lyapunov stability theorem, it is proved that the state of the resulting closed‐loop system converges to the origin in finite time. Two simulation examples are given to verify the effectiveness of the proposed scheme.  相似文献   

5.
This paper describes a delay‐range‐dependent local state feedback controller synthesis approach providing estimation of the region of stability for nonlinear time‐delay systems under input saturation. By employing a Lyapunov–Krasovskii functional, properties of nonlinear functions, local sector condition and Jensen's inequality, a sufficient condition is derived for stabilization of nonlinear systems with interval delays varying within a range. Novel solutions to the delay‐range‐dependent and delay‐dependent stabilization problems for linear and nonlinear time‐delay systems, respectively, subject to input saturation are derived as specific scenarios of the proposed control strategy. Also, a delay‐rate‐independent condition for control of nonlinear systems in the presence of input saturation with unknown delay‐derivative bound information is established. And further, a robust state feedback controller synthesis scheme ensuring L2 gain reduction from disturbance to output is devised to address the problem of the stabilization of input‐constrained nonlinear time‐delay systems with varying interval lags. The proposed design conditions can be solved using linear matrix inequality tools in connection with conventional cone complementary linearization algorithms. Simulation results for an unstable nonlinear time‐delay network and a large‐scale chemical reactor under input saturation and varying interval time‐delays are analyzed to demonstrate the effectiveness of the proposed methodology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
An output feedback controller is designed for a class of uncertain nonlinear systems with relative degree higher than one. A super‐twisting sliding mode state feedback controller is designed and implemented using a high‐gain observer. It is proved that the controller achieves practical stabilization and the ultimate bound can be reduced by decreasing a design parameter. The performance of the controller is illustrated by simulation.  相似文献   

7.
This paper focuses on proposing novel conditions for stability analysis and stabilization of the class of nonlinear fractional‐order systems. First, by considering the class of nonlinear fractional‐order systems as a feedback interconnection system and applying small‐gain theorem, a condition is proposed for L2‐norm boundedness of the solutions of these systems. Then, by using the Mittag‐Leffler function properties, we show that satisfaction of the proposed condition proves the global asymptotic stability of the class of nonlinear fractional‐order systems with fractional order lying in (0.5, 1) or (1.5, 2). Unlike the Lyapunov‐based methods for stability analysis of fractional‐order systems, the new condition depends on the fractional order of the system. Moreover, it is related to the H‐norm of the linear part of the system and it can be transformed to linear matrix inequalities (LMIs) using fractional‐order bounded‐real lemma. Furthermore, the proposed stability analysis method is extended to the state‐feedback and observer‐based controller design for the class of nonlinear fractional‐order systems based on solving some LMIs. In the observer‐based stabilization problem, we prove that the separation principle holds using our method and one can find the observer gain and pseudostate‐feedback gain in two separate steps. Finally, three numerical examples are provided to demonstrate the advantage of the novel proposed conditions with the previous results.  相似文献   

8.
The problem of global robust stabilization is studied by both continuous‐time and sampled‐data output feedback for a family of nonminimum‐phase nonlinear systems with uncertainty. The uncertain nonlinear system considered in this paper has an interconnect structure consisting of a driving system and a possibly unstable zero dynamics with uncertainty, ie, the uncertain driven system. Under a linear growth condition on the uncertain zero dynamics and a Lipschitz condition on the driving system, we show that it is possible to globally robustly stabilize the family of uncertain nonminimum‐phase systems by a single continuous‐time or a sampled‐data output feedback controller. The sampled‐data output feedback controller is designed by using the emulated versions of a continuous‐time observer and a state feedback controller, ie, by holding the input/output signals constant over each sampling interval. The design of either continuous‐time or sampled‐data output compensator uses only the information of the nominal system of the uncertain controlled plant. In the case of sampled‐data control, global robust stability of the hybrid closed‐loop system with uncertainty is established by means of a feedback domination method together with the robustness of the nominal closed‐loop system if the sampling time is small enough.  相似文献   

9.
This article addresses the problem of global adaptive finite‐time control for a class of p‐normal nonlinear systems via an event‐triggered strategy. A state feedback controller is first designed for the nominal system by adding a power integrator method. Then, by the skillful design of adaptive dynamic gain mechanism, a novel event‐triggered controller is constructed for uncertain nonlinear system without homogeneous growth condition. It is proved that the global finite‐time stabilization of p‐normal nonlinear systems is guaranteed and the Zeno phenomenon is excluded. Finally, two examples are presented to indicate the effectiveness of the proposed control scheme.  相似文献   

10.
This paper presents fault tolerant controllers for a class of one‐sided Lipschitz nonlinear systems with external disturbances. A sliding mode observer (SMO) is integrated with the H filtering approach as the fault detection and isolation module. The problem is investigated in the presence of faults and disturbances simultaneously. The H ‐SMO is capable of approximating faults accurately, while reducing the effect of disturbances in the estimation of the state vector and occurred faults. Accordingly, using only a single SMO, the estimation error of the state vector and faults can be made simultaneously arbitrarily small. In addition, to deal with the weighted bilinear form appearing in the one‐sided Lipschitz condition, the quadratically inner bounded condition presented in the literature is employed in this paper as a useful solution. The proposed method guarantees the stability of the overall closed‐loop system, and after a short transient time, the estimation errors for state vector and fault signal converge to a small neighborhood of the origin. The effectiveness of the presented algorithm is confirmed in two examples including a single arm robot with a flexible joint and a numerical simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号