首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article presents a hands‐off control design for discrete‐time nonlinear system with a special type of nonlinear sector termed as “discrete‐time sector.” The design method to define the boundary of a discrete‐time sector is done with control‐Lyapunov function. The generalization of nonlinear system is viewed in the perspective of a comparison function. By means of a proposed sector, a switching control is designed such that no control action is experienced inside the sector thus, saving unnecessary control efforts. However, to study the robustness for discrete‐time system, a hands‐off control is modified to ensure the monotonic decrease in the energy of the system. Finally, the proposed approach is verified with the simulation results.  相似文献   

2.
Our problem of interest is to minimize a sequence of scalar‐valued loss functions fk(·) or to locate the root(s) of a sequence of vector‐valued functions g k(·) corresponding to time with respect to a parameter . The available information for the minimization/root‐finding is the noise‐corrupted observation(s) of either fk(·) or g k(·) evaluated at a few of certain design points only. Taking both the dynamics and randomness into consideration, we use stochastic approximation (SA) algorithms to solve the time‐varying problem, but with a nondecaying gain (stepsize). The tracking performance of the nondecaying gain SA algorithm is guaranteed by a computable bound for the root‐mean‐squared error and mean‐absolute‐deviation. The only assumption imposed on the drifts is that the average distance between two consecutive underlying true parameters is bounded from above—this assumption allows the varying target to change abruptly. The error term arising from using the noisy evaluation of fk(·) or g k(·) in constructing the search direction is assumed to have bounded second‐moment—this allows for biased estimator to be used in the SA algorithms. Given the lenient assumptions on the drift and error term, the error bounds apply to a broad class of time‐varying scenarios and are useful for finite‐sample analysis. Since the tracking capability characterizes the average performance across all possible sample paths, it may not provide much guidance on the gain‐tuning strategies useful for one single run. Hence, we propose a data‐dependent gain‐tuning strategy based on estimating the Hessian information and the noise level. The adaptive rule is advantageous as it enables the step size to vary with information gathered during the progress of the estimation procedure.  相似文献   

3.
By applying the It formula, the Gronwall inequality, and the law of large numbers technique, a new simple sufficient inequality condition is presented for the almost surely exponential stability of the stochastic Cohen‐Grossberg neural networks with impulse control and time‐varying delays. Moreover, a new result is also given for the existence of unique states of the systems. An impulsive controller and a suitable noise controller are also given at the same time. The condition contains and improves some of the previous results in the earlier references.  相似文献   

4.
This article is concerned with the quasi‐time‐dependent asynchronous filter design problem for a class of discrete‐time switched systems via the event‐triggering mechanism. Applying the quasi‐time‐dependent Lyapunov functions and the mode‐dependent average dwell time technique, an asynchronous filter is designed with a weighted performance index; the filter parameter matrices are quasi‐time‐dependent in each event‐triggering‐dependent sampling interval; both cases (Case 1: no more than one switching, Case 2: multiple switchings) are taken into account in this sampling interval, by which the assumption, that the maximal asynchronous period is not larger than the minimal dwell time, is relaxed in this article. Simulation examples are given to show the less conservatism and effectiveness of the proposed results.  相似文献   

5.
This article investigates the event‐triggered (ET) states feedback robust control problem for a class of continuous‐time networked semi‐Markov jump systems (S‐MJSs). An ET scheme, which depends on semi‐Markov process, is presented to design a suitable controller and save communication resources. To cope with the network transmission delay phenomenon, a time‐delay S‐MJSs model under the ET scheme is introduced to describe this phenomenon. Then, it is assumed that the communication links between event detector and zero‐order holder are imperfect, where the signal quantization and the actuator fault occur simultaneously. The sufficient conditions are derived by means of linear matrix inequalities approach, which guarantees the stochastic stability of the constructed time‐delay S‐MJSs in an optimized performance level. Based on these criteria, the parameters of controller under the ET scheme are readily calculated. Some simulation results with respect to F‐404 aircraft engine system for two kinds of ET parameters are given to validate the proposed method.  相似文献   

6.
This paper focuses on the problem of semiglobal finite‐time synchronization of stochastic complex networks via an intermittent control strategy. By establishing a finite‐time criterion condition and a novel finite‐time ‐operator differential inequality, combined with convex techniques, some sufficient conditions are obtained to ensure finite‐time synchronization for stochastic complex networks with time delays. An effective controller is given to guarantee inner finite‐time synchronization, especially for a nondelayed dynamic system. This paper provides a simple controller. Finally, a numerical simulation is given to demonstrate the effectiveness of our results.  相似文献   

7.
Estimation of unmeasured variables is a crucial objective in a broad range of applications. However, the estimation process turns into a challenging problem when the underlying model is nonlinear and even more so when additionally it exhibits multiple time scales. The existing results on estimation for systems with two time scales apply to a limited class of nonlinear plants and observers. We focus on analyzing nonlinear observers designed for the slow state variables of nonlinear singularly perturbed systems. Moreover, we consider the presence of bounded measurement noise in the system. We generalize current results by considering broader classes of plants and estimators to cover reduced‐order, full‐order, and higher‐order observers. First, we show that the singularly perturbed system has bounded solutions under an appropriate set of assumptions on the corresponding boundary layer and reduced systems. We then exploit this property to prove that, under reasonable assumptions, the error dynamics of the observer designed for the reduced system are semiglobally input‐to‐state practically stable when the observer is implemented on the original plant. We also conclude stability results when the measurement noise belongs to . In the absence of measurement noise, we state results on semiglobal practical asymptotical stability for the error dynamics. We illustrate the generality of our main results through three classes of systems with corresponding observers and one numerical example.  相似文献   

8.
There are significant advantages associated with the analysis of satellite trajectory control problems in the Hill's analysis framework. As with the circular restricted three‐body problem (CRTBP) equations, the Hill's equations support three‐dimensional “halo” orbits that require station‐keeping control. These orbits are typically in regions of space close to a libration point. In most cases these orbits are unstable, with drag effects introducing uncertain exogenous forces. A two‐degree‐of‐freedom control strategy is used to maintain a pre‐selected orbit and introduce a quantifiable robust stability margin. The control study presented is based on a time‐periodic state feedback law, and a time‐periodic feed‐forward control that is based on a linearized drag model. The efficacy of these ideas is demonstrated by simulation.  相似文献   

9.
To design robust interval observers for uncertain continuous‐time linear systems, a new set‐integration approach is proposed to compute trajectory tubes for the estimation error. Because this approach, the order‐preserving condition on the dynamics of the estimation error is no longer required. Therefore, synthesis methods can be used to compute observer gains that reduce the impact of the system uncertainties on the accuracy of the estimated state enclosures. The performance of the proposed approach is showcased through illustrative numerical examples.  相似文献   

10.
This paper proposes a novel dynamic surface control algorithm for a class of uncertain nonlinear systems in completely non‐affine pure‐feedback form. Instead of using the mean value theorem, we construct an affine variable at each design step, and then neural network is employed to deduce a virtual control signal or an actual control signal. As a result, the unknown control directions and singularity problem raised by the mean value theorem is circumvented. The proposed scheme is able to overcome the explosion of complexity inherent in backstepping control and guarantee the tracking performance by introducing an initialization technique based on a surface error modification. Simulation results are presented to demonstrate the efficiency of the proposed scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
This paper investigates the issues of stochastic stability and extended dissipativity analysis for uncertain neutral systems with semi‐Markovian jumping parameters. A new criterion about the stochastic stability and extended dissipativity of uncertain neutral systems with semi‐Markovian jumping parameters is obtained based on the new Lyapunov‐Krasovskii functionals together with the introduced novel free matrix–based integral inequality. The major contribution of this study is that the stochastic stability and extended dissipativity concept for uncertain neutral systems with semi‐Markovian jumping parameters can be developed to simultaneously analyze the solutions of the L2 ? L performance, H action, passivity behavior, and dissipativity by selecting different weighting matrices. Finally, several interesting numerical examples are provided to show the effectiveness and less conservatism of the proposed method.  相似文献   

12.
This paper presents techniques to linearly combine the sensor measurements and/or actuator inputs of a linear time‐invariant system to obtain a new system that is interior conic with prescribed bounds. In the optimal sensor combination problem, a desired system output is defined, and in the optimal actuator combination problem, a desired system input is defined, along with a frequency bandwidth in which the desired system input or output should be matched. The simultaneous optimal sensor and actuator combination problem includes desired system outputs and inputs. In all cases, the weighted or norm of the difference between the system with linearly combined sensors or actuators and the desired system is minimized while rendering the new system interior conic with prescribed bounds. The weighting transfer matrix used in the ‐ or ‐optimization problem is determined by the frequency bandwidth of interest. The individual sensor and actuator combination methods involve linear matrix inequality constraints and are posed as convex optimization problems, whereas the combined sensor and actuator method is an iterative procedure composed of convex optimization steps. Numerical examples illustrate superior tracking performance with the proposed sensor and actuator combination techniques over comparable techniques in the literature when implemented with a simple feedback controller. Robust asymptotic stability of the closed‐loop system to plant uncertainty is demonstrated in the numerical examples.  相似文献   

13.
This paper is concerned with the design of an LMI‐based discrete‐time nonlinear state observer for an anaerobic digestion model. In presence of disturbances in both the dynamics of the model and the output measurement signals, the proposed observer robustly estimates all state variables including bacteria concentrations, which are costly and difficult to measure. In the goal to increase applicability of the proposed observer for other systems, we present the theoretical results in a general way. First, due to the use of Young's inequality in a convenient way, we get new sufficient conditions, expressed in terms of bilinear matrix inequalities (BMIs), ensuring the criterion. Then, to render the BMIs convex, two alternative solutions are proposed, where both lead to linear matrix inequality (LMI) conditions. It is shown analytically and numerically that these two solutions provide less conservative LMI conditions compared to the existing methods in the literature. To validate the proposed methodology on a real‐world model, an application to an anaerobic digestion model is given.  相似文献   

14.
This article proposes a new strategy to deal with linear parameter‐varying discrete‐time systems, whose time‐varying parameters can be written as solutions (such as exponential, trigonometric, or periodic function) of a linear difference equation (DE). The novelty is to explicitly exploit the precise knowledge of the function describing the time‐varying parameter by incorporating the associated DE in the conditions, providing less conservative results when compared with conventional approaches based on bounded or arbitrary rates of variation. The advantage of the method comes from the fact that, differently from the available methods, the pointwise stability for the whole domain of the time‐varying parameters is not a necessary condition to obtain feasible solutions. The applicability and benefits of the proposed technique are investigated in terms of numerical examples concerning robust stability analysis,  filtering, and  state‐feedback control. As a final contribution, the problem of time‐varying sampling periods in the context of networked control systems is investigated using the proposed strategy. A numerical example based on a practical application is presented to illustrate the superiority of the approach when compared to methods from the literature based on matrix exponential computation.  相似文献   

15.
This article investigates exact robust stability bounds of output feedback controlled fractional‐order systems with the commensurate order and single parameter perturbations in all system coefficient matrices. First, a sufficient and necessary condition for robust asymptotical stability of such systems is obtained by using the Kronecker product. Then the maximal upper bounds and minimum lower bounds for robust asymptotical stability are established, respectively, without conservatism by transforming such problems into checking whether the matrix with single parameter perturbations is nonsingular or not. Finally, two numerical examples are given to show the effectiveness of the proposed results.  相似文献   

16.
Robust control of parameter‐dependent input delay linear parameter‐varying (LPV) systems via gain‐scheduled dynamic output‐feedback control is considered in this paper. The controller is designed to provide disturbance rejection in the context of the induced ‐norm or the norm of the closed‐loop system in the presence of uncertainty and disturbances. A reciprocally convex approach is employed to bound the Lyapunov‐Krasovskii functional derivative and extract sufficient conditions for the controller characterization in terms of linear matrix inequalities (LMIs). The approach does not require the rate of the delay to be bounded, hence encompasses a broader family of input‐delay LPV systems with fast‐varying delays. The method is then applied to the air‐fuel ratio (AFR) control in spark ignition (SI) engines where the delay and the plant parameters are functions of the engine speed and mass air flow. The objectives are to track the commanded AFR signal and to optimize the performance of the three‐way catalytic converter (TWC) through the precise AFR control and oxygen level regulation, resulting in improved fuel efficiency and reduced emissions. The designed AFR controller seeks to provide canister purge disturbance rejection over the full operating envelope of the SI engine in the presence of uncertainties. Closed‐loop simulation results are presented to validate the controller performance and robustness while meeting AFR tracking and disturbance rejection requirements.  相似文献   

17.
This article focuses on the stability and stabilization problems of singularly perturbed jump systems. Here, the singularly perturbed parameter (SPP) is also with Markov switching and satisfies any with positive bound predefined. First, stability conditions expressed ?i‐free but involving its bound are developed by constructing an ?i‐dependent Lyapunov function. Then, a method for state feedback stabilization controller depending on SPP is proposed, whose conditions are given in terms of linear matrix inequalities. Moreover, some special cases about deterministic SPP are considered too. Finally, two practical examples are used to demonstrate the effectiveness and superiorities of the proposed methods.  相似文献   

18.
An observer‐based output feedback predictive control approach is proposed for linear parameter varying systems with norm‐bounded external disturbances. Sufficient and necessary robust positively invariant set conditions of the state estimation error are developed to determine the minimal ellipsoidal robust positively invariant set and observer gain through offline computation. The quadratic upper bound of state estimation error is updated and included in an ‐type cost function of predictive control to optimize transient output feedback control performance. Recursive feasibility of the dynamic convex optimization problem is guaranteed in the proposed predictive control strategy. With the input‐to‐state stable observer, the closed‐loop control system states are steered into a bounded set. Simulation results are given to demonstrate the effectiveness of the proposed control strategy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
This paper considers discrete‐time large‐scale networked control systems with multiple local communication networks connecting sensors, controllers, and actuators. The local networks operate asynchronously and independently of each other in the presence of variable sampling intervals, transmission delays, and scheduling protocols (from sensors to controllers). The time‐delay approach that was recently suggested to decentralized stabilization of large‐scale networked systems in the continuous time is extended to decentralized control in the discrete time. An appropriate Lyapunov‐Krasovskii method is presented that leads to efficient LMI conditions for the exponential stability and l2‐gain analysis of the closed loop large‐scale system. Differences from the continuous‐time results are discussed. A numerical example of decentralized control of 2 coupled cart‐pendulum systems illustrates the efficiency of the results.  相似文献   

20.
This paper considers the problem of computing the input u(t) of an internally asymptotically stable, possibly non‐minimum phase, linear, continuous time system Σ yielding a very accurate tracking of a pre‐specified desired output trajectory . The main purpose of the new approach proposed here is to alleviate some limitations that inherent the classical methods developed in the framework of the preview‐based stable inversion, which represents an important reference context for this class of control problems. In particular, the new method allows one to deal with arbitrary and possibly uncertain initial conditions and does not require a pre‐actuation. The desired output to be exactly tracked in steady state is here assumed to belong to the set of polynomials, exponential, and sinusoidal time functions. The desired transient response is specified to obtain a fast and smooth transition toward the steady‐state trajectory , without under and/or overshoot in the case of a set point reset. The transient control input ut(t) is a priori assumed to be given by a piecewise polynomial function. Once has been specified, this allows the computation of the unknown ut(t) as the approximate least squares solution of the Fredholm's integral equation corresponding to the explicit formula of the output forced response. The steady‐state input us(t) is analytically computed exploiting the steady‐state output response expressions for inputs belonging to the same set of . Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号