共查询到20条相似文献,搜索用时 62 毫秒
1.
一种多微粒群协同进化算法 总被引:4,自引:0,他引:4
受自然界共生现象的启发,将微粒群算法和协同进化相结合,提出了一种多微粒群协同进化算法。进化过程中,粒子不仅要与本子群的其他微粒交换信息,还要受其他子群体的影响。通过对三个标准函数优化的实验结果表明,此算法在一定程度上避免了陷入局部极值点并且提高了收敛精度。 相似文献
2.
3.
4.
针对微粒群优化算法易发生过早收敛问题,受自然界分而治之的思想和共生现象的启发,提出了一种二分微粒群协同进化优化算法,算法的主要思想是在奇数次对种群进行寻优,在偶数次将微粒群分为两个子种群,子种群独立完成寻优任务,与其他群体几乎不发生联系。最后,通过对5个标准函数的测试结果表明,提出的算法在一定程度上避免了陷入局部极值点,并且提高了收敛精度。 相似文献
5.
神经网络结构和权值的联合设计一直是神经网络进化设计的一个研究方向.本文根据基本微粒群算法的特点,借鉴递阶编码的思想,构造出一种多种群协同进化微粒群算法.该算法具有种群内个体微粒自由运动特征分量与种群运动特征分量分层递阶进化的特征,克服了标准微粒群算法在多峰函数寻优时出现的微粒“早熟”现象.应用该算法进行径向基神经网络隐层结构和径向基函数参数联合自适应设计,在非线性系统辨识中显示了比较好的收敛性和训练精度,同时也使网络的泛化能力和逼近精度这一对矛盾得到了比较好的协调统一. 相似文献
6.
在对标准微粒群算法分析的基础上,提出了一种多种群协同进化的微粒群算法.它将整个种群分解为多个子种群,各子种群独立进化,周期性地更新共享信息.其中采用了两种不同的更新策略,并对这两种不同的方法进行详细地分析和比较.实验结果表明,合适地更新周期能提高算法的收敛性和最优性. 相似文献
7.
提出一种基于病毒协同进化微粒群的最小属性约简算法.在算法中,进化在宿主与病毒种群之间协同进行,通过满足约简分辨力不变条件的最优病毒种子复制操作产生病毒库,病毒通过感染操作在宿主种群完成横向局部搜索,以提高算法局部精确解搜索能力;同时通过删减操作完成自我更新,实现增加局部搜索范围的目的.最后对UCI数据集进行属性约简实验,结果表明该算法在搜索最小属性约简解方面优于其他进化算法,同时收敛速度及寻优效率也有较大提高. 相似文献
8.
9.
本文提出了一种基于模糊神经网络的噪声自适应消除方法,介绍了该方法的原理及实现算法,并利用特殊函数和一定的噪声作为样本信号,建立了基于模糊神经网络的自适应噪声消除模型。通过该模型对有用信号的参数进行了辨识,仿真结果表明该方法具有学习速度快、诊断精度高等优点,可用于通信线路及其他电子设备的噪声消除。 相似文献
10.
融合微粒群的多种群协同进化免疫算法 总被引:2,自引:0,他引:2
提出一种融合微粒群的多种群协同免疫优势克隆选择算法(PMCICA).该算法将生态学中的协同进化思想引入人工免疫算法中,各子种群内部通过免疫优势克隆选择操作加快了种群收敛速度;所有子种群共享经过改进微粒群优化的高层优良库,实现了整个种群信息共享与协同进化.针对旅行商问题(TSP)的多个实验结果表明,该算法在收敛速度与最优解等方面均取得了较好的效果. 相似文献
11.
RBF神经网络的混合微粒群学习算法 总被引:2,自引:0,他引:2
在分析RBF神经网络的结构特点基础上, 定义一个布尔向量L作为网络的结构参数, 与原来RBF神经网络的隐节点参数集一起构成了新的RBF网络隐节点参数集{c,σ, L}, 并给出了一个新的RBF网络输入输出关系表达式;采用一种混合协同微粒群算法同时对RBF网络拓扑结构和隐层节点参数进行优化设计,并将输出线性参数集分离后采用最小二乘法进行优化设计,简化了优化空间,加速了算法的收敛速度. 相似文献
12.
神经网络基于粒子群优化的学习算法研究 总被引:24,自引:0,他引:24
研究神经网络基于粒子群优化的学习算法,将粒子群优化算法用于神经网络的学习训练,并与遗传算法进行了比较,结果表明,神经网络基于粒子群优化的学习算法简单容易实现,而且能更快地收敛于最优解。 相似文献
13.
摄像机标定是从二维图像提取三维空间信息的关键步骤,标定的精度直接关系到三维重构结果的逼真程度。为了有效解决传统摄像机标定算法中的多参数、计算费时费力等问题,提高摄像机标定的精度和速度,将粒子群遗传算法(particle swarm optimization genetic algorithm,PSO-GA)应用于摄像机标定中。对参数进行粒子群算法优化后,再使用遗传算法中的选择、交叉和变异等操作进行参数优化,以实现粒子群算法与遗传算法的融合。结合后的算法全局搜索能力较强,收敛速度更快,优化能力与鲁棒性得以提高。同时,基于神经网络的摄像机标定方法所能覆盖的标定空间十分有限,提出了一种采用粒子群遗传算法优化BP神经网络的摄像机标定方法,以解决传统摄像机标定方法难以解决的问题。实验数据表明,基于粒子群遗传算法的BP神经网络标定是一种可行的方法,标定精度高,收敛速度快,泛化能力强。 相似文献
14.
考虑粒子群优化算法在不确定系统的自适应控制中的应用。神经网络在不确定系统的自适应控制中起着重要作用。但传统的梯度下降法训练神经网络时收敛速度慢,容易陷入局部极小,且对网络的初始权值等参数极为敏感。为了克服这些缺点,提出了一种基于粒子群算法优化的RBF神经网络整定PID的控制策略。首先,根据粒子群算法的基本原理提出了优化得到RBF神经网络输出权、节点中心和节点基宽参数的初值的算法。其次,再利用梯度下降法对控制器参数进一步调节。将传统的神经网络控制与基于粒子群优化的神经网络控制进行了对比,结果表明,后者有更好逼近精度。以PID控制器参数整定为例,对一类非线性控制系统进行了仿真。仿真结果表明基于粒子群优化的神经网络控制具有较强的鲁棒性和自适应能力。 相似文献
15.
针对BP神经网络易陷入局部最小、收敛速度慢的问题,研究了基于粒子群优化的学习算法,给出了具体的算法方案设计,并将其应用于图像复原。首先用高斯噪声对无噪图像进行模糊处理;然后将结果和原图像组成训练对,用于训练优化后的神经网络;最后利用训练好的神经网络对测试图像进行复原,从而达到去除噪声的目的。仿真结果表明,与BP神经网络相比,PSO-BP算法收敛速度快,迭代次数少,复原的图像在归一化均方误差(NMSE)和峰值信噪比(PSNR)的效果更好。 相似文献
16.
自适应噪声抵消技术是自适应滤波器最普遍的应用之一,它是一种在未知信号和噪声的先验知识条件下,能够很好地消除背景噪声影响的信号处理技术,具有很高的应用价值;但是,在很多情况下,噪声环境非常复杂,往往是非线性的,而目前所使用的自适应滤波器均属线性滤波器,滤波后会使原始信号产生失真;由于神经网络具有非线性等优点,可以很好的逼近非线性函数,所以提出了基于神经网络的自适应噪声抵消器;仿真结果表明,该方法可以效地实现噪声的抵消;最后提出应用DSP实现语音信号自适应噪声抵消的具体方案。 相似文献
17.
对城市用水量的科学预测是城市供水管网规划与设计基础,可以给供水系统安排生产与优化调度提供科学依据。由于传统BP神经网络应用于城市用水量预测存在训练收敛速度过慢、预测精度较低等缺陷,本文提出基于改进粒子群优化BP神经网络的城市用水量预测方法。实验结果表明,该方法的训练收敛速度、预测精度明显优于传统BP神经网络、粒子群优化BP网络的方法,可以满足供水系统生产与调度的实际需要。 相似文献
18.
为了更精确地检测出混沌背景下的微弱目标信号,提高预测效果,文中提出了一种混沌混合粒子群优化RBF神经网络(CHPSO-RBFNN)算法。本算法主要采用了基于群体自适应变异和个体退火操作的混沌粒子群优化RBF神经网络,利用群体自适应变异以及个体退火操作优化混沌粒子群,有效地提高了粒子群算法的全局收敛性,优化了RBF神经网络的结构和参数。把该算法用于预测混沌时间序列、检测混沌背景下微弱目标信号,实验结果表明本算法有良好的非线性预测能力,可以有效地检测出混沌背景下的微弱目标信号。 相似文献
19.
一种改进PSO优化RBF神经网络的新方法 总被引:3,自引:0,他引:3
为了克服神经网络模型结构和参数难以设置的缺点,提出了一种改进粒子群优化的径向基函数(RBF)神经网络的新方法.首先将最近邻聚类用于RBF神经网络隐层中心向量的确定,同时对引入适应度值择优选取的原则对基本粒子群算法进行改进,采用改进粒子群(IMPSO)算法对最近邻聚类的聚类半径进行优化,合理的确定了RBF神经网络的隐层结构.将改进PSO优化的RBF神经网络应用于非线性函数逼近和混沌时间序列预测,经实验仿真验证.与基本粒子群(PSO)算法,收缩因子粒子群(CFA PSO)算法优化的RBF神经网络相比较,其在识别精度和收敛速度上都有了显著的提高. 相似文献
20.
李永新李菲菲 《计算机与数字工程》2014,(2):202-205
针对粒子群优化算法的早熟收敛问题,提出一种改进的自适应多位变异粒子群优化算法.根据群体适应度方差以及当前最优解的大小来确定当前最佳粒子的变异概率,变异操作增强了粒子群优化算法跳出局部最优解的能力,在理论上保证了算法具有良好的性能.对几种典型函数的测试结果表明:该算法的全局搜索能力有了显著改善,收敛速度较快,并且能够有效避免早熟收敛问题. 相似文献