首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The stochastic finite element analysis of elliptic type partial differential equations with non-Gaussian random fields are considered. A novel approach by projecting the solution of the discretized equation into a reduced finite dimensional orthonormal vector basis is investigated. It is shown that the solution can be obtained using a finite series comprising functions of random variables and orthonormal vectors. These functions, called as the spectral functions, can be expressed in terms of the spectral properties of the deterministic coefficient matrices arising due to the discretization of the governing partial differential equation. Based on the projection in a reduced orthonormal vector basis, a Galerkin error minimization approach is proposed. The constants appearing in the Galerkin method are solved from a system of linear equations which has much smaller dimension compared to the original discretized equation. A hybrid analytical and simulation based computational approach is proposed to obtain the moments and probability density function of the solution. The method is illustrated using the stochastic nanomechanics of a zinc oxide (ZnO) nanowire deflected under the atomic force microscope (AFM) tip. The results are compared with the results obtained using direct Monte Carlo simulation, classical Neumann expansion and polynomial chaos approach for different correlation lengths and strengths of randomness.  相似文献   

2.
Summary  A state of art on the application of neural networks in Stochastic Mechanics is presented. The use of these Artificial Intelligence numerical devices is almost exclusively carried out in combination with Monte Carlo simulation for calculating the probability distributions of response variables, specific failure probabilities or statistical quantities. To that purpose the neural networks are trained with a few samples obtained by conventional Monte Carlo techniques and used henceforth to obtain the responses for the rest of samples. The advantage of this approach over standard Monte Carlo techniques lies in the fast computation of the output samples which is characteristic of neural networks in comparison to the lengthy calculation required by finite element solvers. The paper considers this combined method as applied to three categories of stochastic mechanics problems, namely those modelled with random variables, random fields and random processes. While the first class is suitable to the analysis of static problems under the effect of values of loads and resistances independent from time and space, the second is useful for describing the spatial variability of material properties and the third for dynamic loads producing random vibration. The applicability of some classical and special neural network types are discussed from the points of view of the type of input/output mapping, the accuracy and the numerical efficiency.  相似文献   

3.
不确定性转子系统的随机有限元建模及响应分析   总被引:1,自引:0,他引:1  
随机特性和随机载荷会引起转子系统动力响应的不确定性,是转子动力学分析中的重要影响因素.本文基于Timosheke梁理论,把转轴的材料和几何随机特性表示为一维随机场函数,推导出随机转轴有限元列式,建立转子系统随机动力学模型,并给出随机载荷作用下随机转子系统动力响应统计量的分析方法.分别对线性和非线性涡轮泵转子系统进行了随机动力响应分析,并同Monte Carlo仿真结果进行对比,结果表明所建立的随机有限元动力学模型和给出的随机响应分析方法是合理可行的,可以有效应用于实际转子系统随机动力学分析和设计中.  相似文献   

4.
Hyuk-Chun Noh  Taehyo Park   《Computers & Structures》2006,84(31-32):2363-2372
In order to endow the expansion-based stochastic formulation with the capability of representing the characteristic behavior of stochastic systems, i.e., the non-linear dependence of the response variability on the coefficient of variation of the stochastic field, a Monte Carlo simulation-compatible stochastic field is suggested. Through a theoretical comparison of displacement vectors in the Monte Carlo method and an expansion-based scheme, it is found that the stochastic field adopted in the expansion-based scheme is not compatible with that appearing in the Monte Carlo simulation. The Monte Carlo simulation-compatible stochastic field is established by means of enforcing the compatibility between the stochastic fields in the expansion-based scheme and the Monte Carlo simulation. Employing the stochastic field suggested in this study, the response variability is reproduced with high precision even for uncertain fields with a moderately large coefficient of variation. Furthermore, the formulation proposed here can be used as an indirect Monte Carlo scheme by directly substituting the numerically simulated random fields into the covariance formula. This yields a pronounced reduction in the computation cost while resulting in virtually the same response variability as the Monte Carlo technique.  相似文献   

5.
An asymptotic spectral stochastic approach is presented for computing the statistics of the equilibrium path in the post-bifurcation regime for structural systems with random material properties. The approach combines numerical implementation of Koiter’s asymptotic theory with a stochastic Galerkin scheme and collocation in stochastic space to quantify uncertainties in the parametric representation of the load–displacement relationship, specifically in the form of uncertain post-buckling slope, post-buckling curvature, and a family of stochastic displacement fields. Using the proposed method, post-buckling response statistics for two plane frames are obtained and shown to be in close agreement with those obtained from Monte Carlo simulation, provided a fine enough spectral representation is used to model the variability in the random dimension.  相似文献   

6.
A stochastic finite-element-based algorithm for the probabilistic free vibration analysis of beams subjected to axial forces is proposed in this paper through combination of the advantages of the response surface method, finite element method and Monte Carlo simulation. Uncertainties in the structural parameters can be taken into account in this algorithm. Three response surface models are proposed. Model I: star experiment design using a quadratic polynomial without cross-terms; Model II: minimum experiment design using a quadratic polynomial with cross-terms; Model III: composite experiment design using a quadratic polynomial with cross-terms.A separate set of finite element data is generated to verify the models. The results show that the Model II is the most promising one in view of its accuracy and efficiency. Probabilistic free vibration analysis of a simply supported beam is performed to investigate the effects of various parameters on the statistical moments of the frequency response of beams. It is found that the geometric properties of beams have significant effects on the variation of frequency response.  相似文献   

7.
A simultaneously efficient and robust approach for distribution-free parametric inference, called the simulated minimum Hellinger distance (SMHD) estimator, is proposed. In the SMHD estimation, the Hellinger distance between the nonparametrically estimated density of the observed data and that of the simulated samples from the model is minimized. The method is applicable to the situation where the closed-form expression of the model density is intractable but simulating random variables from the model is possible. The robustness of the SMHD estimator is equivalent to the minimum Hellinger distance estimator. The finite sample efficiency of the proposed methodology is found to be comparable to the Bayesian Markov chain Monte Carlo and maximum likelihood Monte Carlo methods and outperform the efficient method of moments estimators. The robustness of the method to a stochastic volatility model is demonstrated by a simulation study. An empirical application to the weekly observations of foreign exchange rates is presented.  相似文献   

8.
A stochastic finite element method is developed for the buckling analysis of frames with random initial imperfections, uncertain sectional and material properties. The random geometrical imperfections of the frames are described by member initial crookednesses which are modeled as given initial displacement functions with amplitudes treated as random variables. The effects of the random initial geometric imperfections are formulated as a set of equivalent random nodal coordinates in the finite element discretization of the members. The mean-centered second-order perturbation technique is used to formulate the stochastic finite element method for the buckling analysis of the imperfect frames. Use of the present method is illustrated by several examples of buckling analysis of random frames. Results derived from the Monte Carlo method are also obtained for comparison.  相似文献   

9.
In this paper, a discontinuous Galerkin method for the stochastic Cahn-Hilliard equation with additive random noise, which preserves the conservation of mass, is investigated. Numerical analysis and error estimates are carried out for the linearized stochastic Cahn-Hilliard equation. The effects of the noises on the accuracy of our scheme are also presented. Numerical examples simulated by Monte Carlo method for both linear and nonlinear stochastic Cahn-Hilliard equations are presented to illustrate the convergence rate and validate our conclusion.  相似文献   

10.
Generalised nth order stochastic perturbation technique that can be applied to solve some boundary value or boundary initial problems in computational physics and/or engineering with random coefficients is presented here. This technique is implemented in conjunction with the finite element method (FEM) to model 1D linear elastostatics problem with a single random variable. Main motivation of this work is to improve essentially the accuracy of the stochastic perturbation technique, which in its second order realization was ineffective for large variations of the input random fields. The nth order approach makes it possible to specify the accuracy of the computations a priori for the expected values and variances separately. The symbolic computer program is employed to perform computational studies on convergence of the first two probabilistic moments for simple unidirectional tension of the bar. These numerical studies verify the influence of coefficient of variation of the random input and, in the same time, of the perturbation parameter on the first four probabilistic moments of the final solution vector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号