共查询到10条相似文献,搜索用时 31 毫秒
1.
基于扩展微粒群算法模型控制群机器人协同搜索目标时,成员机器人在社会经验和自身认知,主要是社会经验引导下逐步向目标趋近.由于社会经验仅从成员机器人的认知中“选举”产生,未形式化地融合多个机器人的经验,因此文中从群机器人通信子系统在本质上属于无线传感器网络的事实出发,引入集体决策机制,改进社会经验的生成模式.用无线传感器网络中的测距定位方法来估计目标位置,并将估计值作为社会经验引入现有模型.仿真结果表明,当群体规模够大时,采用文中社会经验生成模式可使协同搜索速度得到提高. 相似文献
2.
量子粒子群优化算法在摄像机标定中的应用 总被引:1,自引:0,他引:1
摄像机标定是三维重构中最关键的一步,它的精度直接决定了三维重构结果的逼真程度。为了能够提高摄像机标定的精度,克服传统优化算法易陷入局部最小,反投影误差大等缺点,首次将量子粒子群优化算法(Quantum-Behaved Particle Swarm Optimization,QPSO)应用于摄像机标定中。该方法利用传统的线性方法求得初始值,利用QPSO对初始值进行优化。实验数据表明,基于QPSO的摄像机标定的平均反投影误差小于一个像素,是一种可行的方法,且与智能优化算法PSO相比,基于QPSO的摄像机标定具有更小的误差。 相似文献
3.
QPSO算法优化的非线性观测器设计方法研究 总被引:3,自引:0,他引:3
具有量子行为的粒子群优化算法(Quantum-behavedParticleSwarmOptimization,简称QPSO)是继粒子群优化算法(ParticleSwarmOptimization,简称PSO)后,最新提出的一种新型、高效的进化算法。论文在研究基于PSO算法的非线性观测器基础上,提出了一种基于QPSO算法的非线性观测设计方法。以vanderPol系统为例进行了仿真实验,其基本思想是将非线性连续时间系统的状态估计问题转换为非线性函数的在线优化问题,然后利用PSO或QPSO算法获得系统状态的最优估计。仿真结果显示了基于QPSO算法的非观测器比基于PSO算法的非线性观测器的性能更优越。 相似文献
4.
5.
量子粒子群算法求解QoS组播路由 总被引:1,自引:0,他引:1
马翔 《计算机工程与应用》2009,45(16):111-113
QoS组播路由问题是一个非线性的组合优化问题,已证明了该问题是NP完全问题。将量子粒子群算法用于此类问题的求解。并在此基础上对基本的量子粒子群算法进行改进,针对群体智能和约束优化问题的特点,提出了一种在每次迭代中有选择地保留一定数量不可行解的方法,并把它结合到量子粒子群优化(QDPSO)算法中。该算法可以利用保留下来的不可行解来帮助搜索靠近边界的最优解,同时又可以避免罚因子的选择问题,使之更适合于QoS组播路由的求解。仿真实验结果显示,该算法能快速搜索并收敛到全局(近似)最优解,且随着网络规模的增大算法保持了良好的特性,在寻优速度上与解的质量上优于其他粒子群算法与基本的量子粒子群算法。 相似文献
6.
7.
基于狮群中狮王、母狮及幼狮的自然分工,模拟狮王守护、母狮捕猎、幼狮跟随3种群智能行为,提出群体智能算法——狮群算法.算法中不同种类的狮子位置更新方式不同.遵循自然界生物“适者生存”的竞争法则,狮王守护领土,优先享用食物,母狮合作捕猎,幼狮分为学习捕猎、饥饿进食和成年被驱逐.狮子位置更新方式的多样化保证算法快速收敛,不易陷入局部最优.最后,将算法应用于6个标准测试函数优化问题,并对比粒子群算法、骨干粒子群算法,测试结果表明,文中算法收敛速度较快,精度较高,能较好地获得全局最优解. 相似文献
8.
保持粒子活性的改进粒子群优化算法 总被引:6,自引:3,他引:6
针对基本粒子群优化算法(particle swarm optimization, 简称PSO)存在的早熟收敛问题,提出了一种保持粒子活性的改进粒子群优化(IPSO)算法。当粒子失活时,对粒子进行变异或扰动操作,重新激活粒子,使粒子能够有效地进行全局和局部搜索。通过对4种Benchmark函数的测试,结果表明IPSO算法不仅具有较快的收敛速度,而且能够更有效地进行全局搜索。 相似文献
9.
为了进一步提高量子粒子群算法的精度,从描述粒子状态波函数的[δ]势阱特征长度[L(t)]出发,重新修改其评价方式。通过给群体中的每个粒子引入随机权重,生成随机权重平均最优位置来重新评价[L(t)],以增强算法的随机性,帮助算法逃离局部极小值点的束缚,使算法尽快找到全局极值点。通过几个典型函数测试表明,改进算法的收敛精度优于QPSO算法,并且具有很强的避免陷入局部极值点的能力。 相似文献
10.
软件可靠性建模是一个重要的研究领域,现有的软件可靠性模型基本上是非线性函数模型,估计这些模型的参数比较困难。粒子群优化是一类适合求解非线性优化问题的随机优化方法,提出一种基于粒子群优化的软件可靠性模型估计参数方法,该方法的关键是构造合适的适应函数。用该方法分别估计了5个实际软件系统的指数软件可靠性模型以及对数泊松执行时间模型,实验结果表明:该方法参数估计的精度高,对模型的适应性强。 相似文献