首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 906 毫秒

1.  基于流形主动学习的遥感图像分类算法  被引次数:1
   刘康  钱旭  王自强《计算机应用》,2013年第33卷第2期
   为了高效地解决遥感图像分类问题,提出一种基于流形学习和支持向量机(SVM)的图像分类算法.在初始阶段,该算法首先利用初始训练集训练SVM,并且使用SVM找出离分类界面最近的样本;然后在所选样本中利用拉普拉斯图构建样本空间的流形结构,选出最具有代表性的样本加入训练集;最后利用高光谱图像进行实验进行验证.通过与现有的主动学习算法进行比较,结果表明该算法获得了更高的分类准确率.    

2.  基于随机子空间核极端学习机集成的高光谱遥感图像分类  
   宋相法  曹志伟  郑逢斌  焦李成《计算机科学》,2016年第43卷第3期
   结合随机子空间和核极端学习机集成提出了一种新的高光谱遥感图像分类方法。首先利用随机子空间方法从高光谱遥感图像数据的整体特征中随机生成多个大小相同的特征子集;然后利用核极端学习机在这些特征子集上进行训练从而获得基分类器;最后将所有基分类器的输出集成起来,通过投票机制得到分类结果。在高光谱遥感图像数据集上的实验结果表明:所提方法能够提高分类效果,且其分类总精度要高于核极端学习机和随机森林方法。    

3.  基于核熵成分分析的高光谱遥感图像分类算法  
   王瀛  郭雷  梁楠《吉林大学学报(工学版)》,2012年第42卷第6期
   根据核熵成分分析(KECA)的特点提出了基于凸面几何学概念的样本集选取方法和以特征空间光谱角为相似性度量的C-均值分类算法,并将其用于高光谱遥感图像分类。在HYDICE高光谱数据上的试验表明,本文提出的算法可以有效地提高分类精度。    

4.  基于动态集成的遥感图像分类  
   廖炳根  何灵敏  潘益民《中国计量学院学报》,2011年第22卷第2期
   鉴于多分类器集成能够获得比单个分类器更好的性能,但是对于支持向量机(support vector ma-chine,SVM),一般的集成方法很难达到效果.特提出了基于局部精度(local accuracy,LA)的动态集成算法.首先,通过多种方法产生个体分类器;其次,利用验证数据集来定义LA,LA用来衡量各个体分类器的权重以及判断是否挑选该个体分类器的标准;最后,在某研究区的遥感图像数据集上进行实验.实验结果表明,动态集成的效果要优于静态集成,特别是异类动态集成效果最好.静态集成只考虑了分类器在训练样本中的表现而没有考虑测试样本的特征,对于动态集成,可以根据测试样本在验证集上的表现来选择个体分类器,因此它展现出更好的性能.    

5.  基于光谱特征和纹理特征协同学习的高光谱图像数据分类  
   李吉明  贾森  彭艳斌《光电工程》,2012年第39卷第11期
   高光谱遥感图像中包含有大量的高维数据,传统的有监督学习算法在对这些数据进行分类时要求获取足够多的有标记样本用于分类器的训练.然而,对高光谱图像中大量的复杂地物像元所属类别进行准确标注通常需要耗费极大的人力.在本文中,我们提出了一种基于半监督学习的光谱和纹理特征协同学习(STF-CT)--法,利用协同学习机制将高光谱图像光谱特征和空间纹理特征这两种不同的特征结合起来,用于小训练样本集下的高光谱图像数据分类问题.STF-CT算法充分利用了高光谱图像的光谱和纹理特征这两个独立视图,构建起一种有效的半监督分类方法,用于提升分类器在小训练样本集情况下的分类精度.实验结果表明该算法在小训练样本集下的高光谱地物分类问题上具有很好的效果.    

6.  基于SVM的高维多光谱图像分类算法及其特性的研究  被引次数:4
   夏建涛  何明一《计算机工程》,2003年第29卷第13期
   针对传统模式分类算法在处理高维多光谱图像时面临的困难,文章把支持向量机(Support Vector Machine,SVM)用于高维多光谱图像分类,有效地减弱了Hughes现象,获得了比传统方法更好的分类精度。研究了高维多光谱图像分类中SVM的分类性能与训练样本数目和数据维数之间的关系。实验结果表明,与传统模式分类方法相比,SVM具有分类精度高、推广性强的优点,尤其是当学习样本数目较少、数据维数高时,SVM的优势更加明显。    

7.  基于特征加权的高光谱图像融合分类  
   汪超永  孙丙宇  李文波《计算机系统应用》,2015年第24卷第9期
   在对高光谱图像监督分类中, 传统的监督学习方法对高光谱数据进行分类时需要获取足够的有标记样本作为训练样本, 这样可以有效的避免Hughes效应. 实际情况下的高光谱数据拥有较多的波段和相对较小的训练样本集给传统的遥感图像分类方法带来了挑战. 因此, 提出了一种基于特征组合以及特征加权的高光谱图像分类算法, 针对纹理特征分析难度较大的现实, 利用一阶直方图的统计特征描述图像纹理特征, 通过类内散度矩阵的逆矩阵作为特征加权矩阵构造组合核函数将高光谱光谱特征和空间特征融合起来, 同时利用特征加权的方法用于提高小训练样本的监督分类精度. 实验结果表明, 本文所提的方法对小样本的高光谱数据分类具有良好的效果.    

8.  基于非线性核空间映射与人工免疫网络的高光谱遥感图像分类  
   陈善静  胡以华  孙杜娟  徐世龙《红外与毫米波学报》,2014年第33卷第3期
   提出了一种基于非线性核空间映射人工免疫网络的高光谱遥感图像分类算法.根据生物免疫网络基本原理构建了人工免疫网络模型,利用非线性核函数将高光谱训练样本映射到高维空间,完善了人工免疫网络中目标样本核空间相似性分选方法,降低了人工免疫网络识别样本所需的抗体数量,提升了算法的分类精度和运算效率.为了验证算法的有效性,利用两组高光谱遥感数据将多种高光谱分类方法进行了对比实验.实验表明该算法分类精度和算法运算时间上都有较大改善,是一种分类精度更高、运算速度更快的改进型基于人工免疫网络的高光谱遥感图像分类新方法.    

9.  一种结合波段分组特征和形态学特征的高光谱图像分类方法  
   张帆  杜博  张良培  张乐飞《计算机科学》,2014年第41卷第12期
   如何准确识别图像中的类别信息,是计算机视觉和模式识别领域的重要研究问题。遥感卫星图像数据,尤其是高光谱等遥感图像数据的出现,将空间信息与光谱信息集成于同一数据集中,丰富了图像信息来源。如何准确地识别高光谱图像中的地物类别,已经成为了图像处理和模式识别领域的热点问题。面向高光谱图像数据提出了一种基于波段分组特征和形态学特征的高光谱图像分类方法,结合空间和光谱特征提高分类精度。通过真实的高光谱数据实验证明:利用波段分组可以有效地保持光谱特征,降低数据冗余;在波段分组基础上结合形态学特征进行分类,比传统分类方法的分类精度明显提高。    

10.  基于稀疏表示及光谱信息的高光谱遥感图像分类  被引次数:5
   宋相法  焦李成《电子与信息学报》,2012年第34卷第2期
   该文结合稀疏表示及光谱信息提出了一种新的高光谱遥感图像分类算法。首先提出利用高光谱遥感图像数据集构造学习字典,然后根据学习字典计算每个像元的稀疏系数,从而获得像元的稀疏表示特征,最后根据稀疏表示特征和光谱信息分别构造随机森林,通过投票机制得到最终的分类结果。在AVIRIS高光谱遥感图像上的实验结果表明:该文所提方法能够提高分类效果,且其分类总精度和Kappa系数要高于光谱信息和稀疏表示特征方法。    

11.  多光谱遥感图像BP网分类器学习样本选取法的研究  被引次数:4
   于秀兰 钱国蕙《红外与毫米波学报》,1999年第18卷第6期
   通过分析多光谱遥感图像学习样本在光谱空间不同位置对BP神经网络分类器分类精度的影响,提出基于x2 分布的学习样本选取方法,并应用于TM 图像分类.对6 种地物应用不同样本选取法训练的BP网分类器和Bayes分类器的分类结果比较表明:本方法分类精度明显高于Bayes分类器和其它样本选取法得到的BP网分类器,并具有学习样本数量少等特点    

12.  空间约束半监督高斯过程下的高光谱图像分类  
   姚伏天  钱沄涛  李吉明《浙江大学学报(工学版)》,2012年第7期
   针对高光谱遥感图像分类中带标记训练样本较少、导致分类正确率偏低的问题,提出用于高光谱图像分类的空间约束半监督高斯过程方法.由于高光谱图像的特征空间满足流形分布假设,大量未标记样本可以使数据空间变得更加稠密,从而有助于更加准确地刻画局部空间特性,提高分类的精度和普适性.通过对高斯过程模型中的核函数施加空间近邻约束,建立未标记样本与带标记样本之间的空间联系.该半监督高斯过程分类器不仅可以提升高光谱遥感图像的分类性能,而且构造简单,实现方便.实验结果表明,在仅有少量带标记的训练样本情况下,半监督高斯过程分类方法对高光谱图像有较高的分类精度和稳定性.    

13.  综合纹理特征的高光谱遥感图像分类方法  被引次数:1
   吴昊《计算机工程与设计》,2012年第33卷第5期
   提出了一种基于Gabor滤波的高光谱遥感图像支持向量机(SVM)分类方法,通过将Gabor滤波器组产生的纹理特征引入SVM分类,不仅充分利用了SVM适于解决高维数据分类问题的优势,而且在分类过程中实现了空间结构信息和光谱信息的综合使用,有效利用了高光谱图像“图谱合一”的特性.采用中科院上海技术物理研究所研制的模块化成像光谱仪OMIS (operative modular imaging spectrometry)真实数据进行的实验,实验结果表明,该方法提高了分类效果,分类结果更具有空间连贯性,并且能有效地克服噪声的影响.    

14.  SVM和RVM对高光谱图像分类的应用潜能分析  
   张宇航  张晔《哈尔滨工业大学学报》,2012年第44卷第3期
   针对高光谱图像分类一直面临的小样本、非线性及高维数等问题,分别从原理和实验两个方面分析比较了两种最新的核学习方法——支持向量机(SVM)和相关向量机(RVM)在高光谱图像分类中的异同点.通过对稀疏性、运算时间及分类精度的实验仿真,结果表明:与SVM相比,RVM模型更加稀疏,从而测试时间更短,更有利于大数据量在线测试;然而,RVM的缺点是分类精度略低于SVM.基于此,本文利用Fisher线性鉴别分析(FLDA)技术,在分类前对高光谱数据作可分性预处理,一方面可以降低数据维数、减少计算量,另一方面可以有效地提高小样本区域的分类精度,进而提高RVM的总体分类精度,使得RVM与SVM相比在高光谱图像精细分类方面更具优势.    

15.  SVM和RVM对高光谱图像分类的应用潜能分析  
   张宇航  张晔《哈尔滨工业大学学报》,2012年第3期
   针对高光谱图像分类一直面临的小样本、非线性及高维数等问题,分别从原理和实验两个方面分析比较了两种最新的核学习方法——支持向量机(SVM)和相关向量机(RVM)在高光谱图像分类中的异同点.通过对稀疏性、运算时间及分类精度的实验仿真,结果表明:与SVM相比,RVM模型更加稀疏,从而测试时间更短,更有利于大数据量在线测试;然而,RVM的缺点是分类精度略低于SVM.基于此,本文利用Fisher线性鉴别分析(FLDA)技术,在分类前对高光谱数据作可分性预处理,一方面可以降低数据维数、减少计算量,另一方面可以有效地提高小样本区域的分类精度,进而提高RVM的总体分类精度,使得RVM与SVM相比在高光谱图像精细分类方面更具优势.    

16.  改进M-training算法的高光谱图像分类  
   崔颖  王雪婷  陆忠军  王立国《哈尔滨工程大学学报》,2018年第10期
   为了解决高光谱数据有标签样本数量有限的分类问题,提出将M-training算法应用于高光谱图像分类。采用两个SVM、一个K近邻(KNN)以及一个随机森林(RF)进行分类器组合,对传统M-training算法进行改进,增强分类器的多样性和差异性。为了充分考虑大量无标签样本的影响,采用有标签样本与无标签样本错误率加权作为有标签样本集更新的限制条件,从而有效地扩大了有标签样本集。实验结果表明:改进算法和传统的M-training算法相比较,在总体分类精度与Kappa系数上分别提高1. 85%~12. 10%与0. 021 5~0. 141 3,从而验证了该算法的有效性。    

17.  基于核最小噪声分离变换的高光谱遥感影像特征提取研究  
   林娜  杨武年《遥感技术与应用》,2013年第2期
   高光谱遥感影像具有高维非线性的特点,线性特征提取方法容易造成信息丢失和失真。在最小噪声分离变换(MNF)线性特征提取算法的基础上,引入核方法,提出核最小噪声分离变换(KM-NF)高光谱遥感影像非线性特征提取方法。KMNF通过核函数,将样本映射到高维特征空间,在特征空间中运算线性MNF,实现原始空间中的非线性KMNF算法。进行基于KMNF的高光谱影像特征提取实验,分析样本个数对KMNF特征提取的效果,发现样本数量对KMNF特征提取的结果影响很小,较少的样本数即可达到较多样本时特征提取的效果。对比KMNF与MNF特征提取的效果,分析它们降维的效率与保留的信息量,发现KMNF总体降维效率与MNF相当,且体现出高光谱图像的非线性特征;在KMNF和MNF特征提取的基础上,利用SVM进行高光谱图像分类,KMNF+SVM的分类精度优于MNF+SVM。    

18.  改进的球结构SVM多分类增量学习算法  被引次数:1
   谢志强  高丽  杨静《哈尔滨工程大学学报》,2009年第30卷第9期
   针对球结构支持向量机(support vector machine,SVM)增量学习算法在训练时间和分类精度上的不足,提出了一种改进的球结构SVM多分类增量学习算法.该算法首先构造一个完全二叉树用于多类分类;分析新增样本的加入对原支持向量集的影响,将新增样本集中部分样本和原始训练集中的支持向量以及分布在球体一定范围内的样本合并做为新的训练集,完成分类器的重构.实现通过减少训练样本缩短训练时间和完善分类器提高分类精度的目的.通过UCI标准数据集实验,结果表明,该算法在所需训练的样本数、训练时间以及准确率3方面都优于球结构SVM增量学习算法,尤其当样本分布不平衡时,该算法有更高的分类准确率.    

19.  基于流形学习的新高光谱图像降维算法  
   普晗晔  王斌  张立明《红外与激光工程》,2014年第1期
   提出了一种新的基于图像块距离的邻域选择方法,并将其应用于流形学习中,得到一类新的高光谱图像非线性降维算法。该类算法利用高光谱图像物理特性,结合图像的光谱信息和空间信息,在最大限度减小图像信息冗余的基础之上,很好地保持了原始数据集的特性。与其它高光谱图像的降维算法相比,改进的流形学习算法不仅考虑到高光谱图像本身的空间关系,而且利用图像块距离更好地保持了数据点之间的局部特性,从而有效地去除原始数据集光谱维和空间维的冗余信息。实际高光谱数据的实验结果表明,所提出的算法在应用于高光谱图像分类时,与其它方法相比具有更高的分类精度。    

20.  一种改进的Laplacian SVM的SAR图像分割算法  
   刘若辰  邹海双  张莉  张萍  焦李成《红外与毫米波学报》,2011年第30卷第3期
   当有标识的样本数量有限时,Laplacian SVM算法需要加入尽量多的无标识样本,以提高分类精度.但同时当无标识样本数很大时,算法的时间和空间复杂度将难以接受.为了将Laplacian SVM应用于SAR图像分割这样的大规模分类问题中,提出了一种改进的Laplacian支持向量机算法(Improved Laplacian Support Vector Machine,Improved Laplacian SVM),首先采用分水岭算法将原始SAR图像分成多个小原型块,提取每个小原型块的图像特征作为训练样本.再采用改进的Laplacian SVM算法得到小原型块的分类结果.通过3幅SAR图像验证了提出的方法,实验表明该方法不仅提高了分割的准确性同时减少了Laplacian SVM算法用于图像分割时的运行时间.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号