首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
目的 随着深度卷积神经网络广泛应用于双目立体图像超分辨率重建任务,双目图像之间的信息融合成为近年来的研究热点。针对目前的双目图像超分辨重建算法对单幅图像的内部信息学习较少的问题,提出多层次融合注意力网络的双目图像超分辨率重建算法,在立体匹配的基础上学习图像内部的丰富信息。方法 首先,利用特征提取模块从不同尺度和深度来获取左图和右图的低频特征。然后,将低频特征作为混合注意力模块的输入,此注意力模块先利用二阶通道非局部注意力模块学习每个图像内部的通道和空间特征,再采用视差注意力模块对左右特征图进行立体匹配。接着采用多层融合模块获取不同深度特征之间的相关信息,进一步指导产生高质量图像重建效果。再利用亚像素卷积对特征图进行上采样,并和低分辨率左图的放大特征相加得到重建特征。最后使用1层卷积得到重建后的高分辨率图像。结果 本文算法采用Flickr1024数据集的800幅图像和60幅经过2倍下采样的Middlebury图像作为训练集,以峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似性(structural similarity,SSIM)作为指标。实验在3个...  相似文献   

2.
现有图像去雾方法普遍存在去雾不彻底、容易出现颜色失真等问题,基于传统深度学习模型的图像去雾方法多采用静态推理模式,在该模式下,模型对不同样本会采用同样的、固定的参数设置,从而抑制了模型的表达能力,影响图像的去雾效果。针对以上问题,文中提出了一种基于动态卷积核的自适应图像去雾算法,该算法包括编码网络、自适应特征增强网络和解码网络3个部分。文中采用动态卷积、密集残差、注意力机制设计了自适应特征增强网络,该网络主要包括动态残差组件和动态跨层特征融合组件。动态残差组件由动态密集残差模块、一个卷积层和双注意力模块构成,其中动态密集残差模块将动态卷积引入密集残差模块,同时设计了一个基于注意力的权重动态聚合子网络,动态地生成卷积核参数以达到样本自适应的目的,在减少信息丢失的同时增强了模型的表达能力;双注意力模块结合通道注意力和像素注意力,使模型更加关注图像通道之间的差异性以及雾霾分布不均匀的区域。动态跨层特征融合组件通过动态融合不同阶段的特征,来学习丰富的上下文信息,防止网络深层计算时遗忘网络的早期特征,同时极大地丰富了特征表示,有利于模型对无雾图像细节信息的恢复。在合成数据集和真实数据集上进行了大...  相似文献   

3.
针对现有的基于卷积神经网络去雾算法无法有效地去除真实雾图非均匀分布的雾霾问题,提出一种基于双支残差特征融合网络的端到端图像去雾算法.上下文空间域注意分支针对有雾图像的高频雾气区域进行像素注意,将空间域注意模块插入多尺度扩张卷积组,对雾霾特征的像素空间进行权重赋值;通道域注意编解码分支针对高频雾霾特征的通道方向进行注意,设置ResNet自编码结构并引入通道注意解码结构对不同通道特征图的权重进行赋值;特征融合模块采用自适应权重融合像素注意和通道注意的雾层特征信息,输出不均匀雾气残差层;将原始雾图和雾气残差层作差实现图像去雾,设计判别网络提高去雾图的视觉观感.采用真实雾气图像数据集NH-Haze进行评估,实验结果表明,所提算法对非均匀分布雾图的去雾视觉效果良好,在峰值信噪比和结构相似度评价上均优于对比算法.  相似文献   

4.
杨青  于明  付强  阎刚 《控制与决策》2023,38(12):3372-3380
针对机器视觉场景图像中由于雨线影响导致背景信息模糊、损失的问题,提出一种基于倍频卷积和注意力机制的图像去雨方法.首先,建立基于空-频域去雨模型,设计基于空间尺度变换和倍频卷积的频率特征分解模块,通过学习得到频率特征和雨线特征的映射关系,降低低频特征空间冗余,提高网络运行效率;其次,设计多层通道注意力模块映射雨线层权重信息,增强重要特征,挖掘雨线层之间的亮度差异,提高雨线检测性能;最后,通过序列操作迭代分解出不同成分的雨线信息,进而完成场景图像去雨.实验结果表明,所提方法对不同方向、形状的雨线和雨滴具有良好的去除性能,同时对于背景图像的细节与边缘信息也具有较好的保护作用.  相似文献   

5.
针对文本生成图像任务中生成图像细节缺失及低分辨率阶段生成图像存在结构性错误的问题,基于动态注意力机制生成对抗网络(DMGAN),引入内容感知上采样模块和通道注意力卷积模块,提出一种新的文本生成图像方法ECAGAN。在低分辨率图像生成阶段的特征图上采样过程中采用基于内容感知的上采样方法,通过输入特征图计算得到重组卷积核,使用重组卷积核和特征图进行卷积操作,确保上采样后的特征图和文本条件的语义一致性,使生成的低分辨率图像更加准确,利用通道注意力卷积模块学习特征图各个特征通道的重要程度,突出重要的特征通道,抑制无效信息,使生成图像的细节更丰富。此外在训练过程中结合条件增强和感知损失函数辅助训练,增强训练过程的鲁棒性,提高生成图像质量。在CUB-200-2011数据集上的实验结果表明,ECAGAN模型初始分数达到了4.83,R值达到了75.62,与DMGAN方法相比,分别提高了1.6%和4.6%,并且可改善生成图像结构错乱的问题,同时能够生成清晰的图像细节,语义一致性更高,更加接近真实图像。  相似文献   

6.
徐成霞  阎庆  李腾  苗开超 《计算机应用》2022,42(8):2578-2585
现有的单幅图像去雨算法难以充分发掘不同维度注意力机制的相互作用,因此提出一种基于联合注意力机制的单幅图像去雨算法。该算法包含通道注意力机制和空间注意力机制:通道注意力机制检测各通道雨线特征的分布,并差异化各个特征通道的重要程度;空间注意力机制则针对通道内雨线分布的空间关系,以局部到全局的方式积累上下文信息,从而高效准确地去雨。此外,引入深度残差收缩网络,以利用残差模块中嵌入的软阈值非线性变换子网络来通过软阈值函数将冗余信息置零,从而提升CNN在噪声中保留图像细节的能力。在公开降雨数据集与自构建的降雨数据集上进行实验,相较于单一空间注意力算法,联合注意力去雨算法的峰值信噪比(PSNR)提升4.5%,结构相似性(SSIM)提升0.3%。实验结果表明,所提算法可以有效地进行单幅图像去雨和图像细节的信息保留,在目视效果和定量指标上均优于对比算法。  相似文献   

7.
张学锋  李金晶 《软件学报》2021,32(10):3283-3292
降雨会严重降低拍摄图像质量和影响户外视觉任务.由于不同图像中,雨的形状、方向和密度不同,导致单幅图像去雨是一项困难的任务.提出一种新的基于双注意力的残差循环单幅图像去雨集成网络(简称RDARENet).在网络中,因为上下文的信息对于去除雨痕十分重要,所以首先采用多尺度的扩张卷积网络去获得更大的感受野.雨痕信息可以认为是多个雨层特征的叠加,为了更好地提取雨痕的特征和恢复背景图层信息,运用了通道和空间注意力机制的残差网络.通道注意力能够反映不同雨层的权重,而空间注意力则通过相邻空间特征之间的关系增强区域的表征.随着网络的加深,防止低层信息的丢失,采用级联的残差网络和长短时间记忆网络,将低层特征信息传递到高层中去,逐阶段地去除雨痕.在网络的输出部分,采用集成学习的方式,将每个阶段的输出结果通过门控网络加权相加,得到最终的无雨图像.实验结果表明,去雨和恢复纹理细节的效果都得到较大提升.  相似文献   

8.
针对街景图像语义分割任务中的目标尺寸差异大、多尺度特征难以高效提取的问题, 本文提出了一种语义分割网络(LDPANet). 首先, 将空洞卷积与引入残差学习单元的深度可分离卷积结合, 来优化编码器结构, 在降低了计算复杂度的同时缓解梯度消失的问题. 然后利用层传递的迭代空洞空间金字塔, 将自顶向下的特征信息依次融合, 提高了上下文信息的有效交互能力; 在多尺度特征融合之后引入属性注意力模块, 使网络抑制冗余信息, 强化重要特征. 再者, 以通道扩展上采样代替双线插值上采样作为解码器, 进一步提升了特征图的分辨率. 最后, LDPANet方法在Cityscapes和CamVid数据集上的精度分别达到了91.8%和87.52%, 与近几年网络模型相比, 本文网络模型可以精确地提取像素的位置信息以及空间维度信息, 提高了语义分割的准确率.  相似文献   

9.
深度神经网络对真实图像有较强的去噪能力,可以学习含噪图像和干净图像之间复杂的非线性映射关系。然而,过多的卷积操作导致计算成本增加并占据大量内存,限制了去噪技术在低运算能力设备中的应用,现有去噪算法容易损坏细节信息,恢复图像存在边缘过度平滑、纹理缺失、含有残留噪声等问题。针对这些问题,构造一种多级残差信息蒸馏模块。通过对特征通道进行分割,保留部分特征用于后续多级融合,并进一步通过深度提取单元提取细化后的特征信息;引入对比度感知通道注意力机制对不同通道的特征分配权重;使用多级跳跃连接充分融合不同阶段提取到的上下文信息。构建1个轻量级的多级残差信息蒸馏网络,采用块间复杂度低的编码-解码结构,编码部分为含噪图像特征提取模块,解码部分为干净图像恢复模块。为了加快训练速度,采用混合图像尺寸的渐进式训练方法。实验结果表明,该方法在SSID和DND真实图像数据集上的峰值信噪比分别为39.43 dB和39.49 dB,与其他网络相比提升了0.17~15.77 dB和0.02~7.06 dB,而模型参数量仅为6.92×106,所提模型在提高去噪性能的同时具有较少的参数量。  相似文献   

10.
基于深度学习的图像去雾方法在合成数据集上表现良好,但在真实场景中应用时存在去雾不彻底、颜色失真等问题。提出一种新的单幅图像去雾网络,该网络包含特征提取、特征融合2个模块。在特征提取模块中,通过残差密集块和具有空间注意机制的特征提取块分别提取图像的局部特征和全局特征。在特征融合模块中,利用通道注意力机制对局部特征图和全局特征图进行通道加权,并通过卷积操作融合加权后的局部特征图与全局特征图。最后,采用门控网络自适应结合3个不同深度的融合特征图,以恢复高质量的去雾图像。实验结果表明,所提网络在室内数据集下的峰值信噪比(PSNR)和结构相似度(SSIM)分别为33.04 dB、0.983,在HAZERD数据集下的PSNR和SSIM分别比GridDehazeNet网络高出1.33 dB和0.041。同时,该网络的模型参数量和浮点运算数分别为0.34M和16.06×109 frame/s,具有较低复杂度,对合成图像和真实图像均可取得理想的去雾效果。  相似文献   

11.
雨天会影响室外图像捕捉的质量,进而引起户外视觉任务性能下降。基于深度学习的单幅图像去雨研究因算法性能优越而引起了大家的关注,并且聚焦点集中在数据集的质量、图像去雨方法、单幅图像去雨后续高层任务的研究和性能评价指标等方面。为了方便研究者快速全面了解该领域,本文从上述4个方面综述了基于深度学习的单幅图像去雨的主流文献。依据数据集的构建方式将雨图数据集分为4类:基于背景雨层简单加和、背景雨层复杂融合、生成对抗网络 (generative adversarial network,GAN)数据驱动合成的数据集,以及半自动化采集的真实数据集。依据任务场景、采取的学习机制以及网络设计对主流算法分类总结。综述了面向单任务和联合任务的去雨算法,单任务即雨滴、雨纹、雨雾和暴雨的去除;联合任务即雨滴和雨纹、所有噪声去除。综述了学习机制和网络构建方式(比如:卷积神经网络 (convolutional neural network,CNN)结构多分支组合,GAN的生成结构,循环和多阶段结构,多尺度结构,编解码结构,基于注意力,基于Transformer)以及数据模型双驱动的构建方式。综述了单幅图像去雨后续高层任务的研究文献和图像去雨算法性能的评价指标。通过合成数据集和真实数据集上的综合实验对比,证实了领域知识隐式引导网络构建可以有效提升算法性能,领域知识显式引导正则化网络的学习有潜力进一步提升算法的泛化性。最后,指出单幅图像去雨工作目前面临的挑战和未来的研究方向。  相似文献   

12.
单幅图像超分辨率(Single Image Super Resolution,SISR)在计算机视觉领域占有重要地位,该技术旨在从低分辨率图像中重建出高分辨率图像。近年来,深度神经网络在SISR领域起到了至关重要的作用,然而,目前利用卷积神经网络平等地对待高频与低频特征,使得高频细节的重建表现不佳,输出过于平滑,缺少纹理信息。另一方面,过于深的网络不容易收敛,并且随着神经网络的深度增长,来自前一层的长期信息很容易在后期层中减弱或丢失,使得重建收益不能正比于网络的深度与计算复杂度。针对以上问题,对用于SISR的卷积神经网络的基本块提出了空间注意力模块与通道注意力模块,在同一通道中,不同位置的信息被空间注意力模块赋予不同的权重,不同通道间的权重由通道注意力模块决定,这使得高频信息在重建任务中获得更高的地位,提高了重建指标。进一步地提出了长期特征调制模块将网络的层深度转化为块深度,大大缩小了网络深度,以解决前层长期信息的丢失问题。在Set5等多个基准数据集上的峰值信噪比(PSNR)均比目前其他基于深度卷积神经网络的方法有所提升,这证明了提出的方法的有效性与先进性。  相似文献   

13.
吴蕾  杨晓敏 《计算机应用》2021,41(4):1172-1178
针对前馈卷积神经网络(CNN)感受野较小、获取上下文信息不足、其特征提取卷积层只能提取到浅层特征的问题,提出改进的基于通道注意力反馈网络的遥感图像融合算法。首先,通过两层卷积层分别初步提取全色(PAN)图像的细节特征和低分辨率多光谱(LMS)图像的光谱特征;其次,将提取的特征和网络反馈的深层特征相结合,并将其输入到通道注意力机制模块中以得到初步精细化特征;然后,经过反馈模块生成表征能力更强的深层特征;最后,将生成的深层特征经过含有反卷积的重建层,从而得到高分辨率多光谱(HMS)图像。在三个不同卫星图像数据集上的实验结果表明:所提算法能很好地提取PAN图像的细节特征和LMS图像的光谱特征,同时其恢复出来的HMS图像在主观视觉上更加清晰,并且在客观评价指标上优于对比算法,同时在均方根误差(RMSE)指标上,所提算法比传统算法降低了50%以上,比前馈卷积神经网络算法降低了10%以上。  相似文献   

14.
目的 与传统分类方法相比,基于深度学习的高光谱图像分类方法能够提取出高光谱图像更深层次的特征。针对现有深度学习的分类方法网络结构简单、特征提取不够充分的问题,提出一种堆叠像元空间变换信息的数据扩充方法,用于解决训练样本不足的问题,并提出一种基于不同尺度的双通道3维卷积神经网络的高光谱图像分类模型,来提取高光谱图像的本质空谱特征。方法 通过对高光谱图像的每一像元及其邻域像元进行旋转、行列变换等操作,丰富中心像元的潜在空间信息,达到数据集扩充的作用。将扩充之后的像素块输入到不同尺度的双通道3维卷积神经网络学习训练集的深层特征,实现更高精度的分类。结果 5次重复实验后取平均的结果表明,在随机选取了10%训练样本并通过8倍数据扩充的情况下,Indian Pines数据集实现了98.34%的总体分类精度,Pavia University数据集总体分类精度达到99.63%,同时对比了不同算法的运行时间,在保证分类精度的前提下,本文算法的运行时间短于对比算法,保证了分类模型的稳定性、高效性。结论 本文提出的基于双通道卷积神经网络的高光谱图像分类模型,既解决了训练样本不足的问题,又综合了高光谱图像的光谱特征和空间特征,提高了高光谱图像的分类精度。  相似文献   

15.
目的 糖尿病性视网膜病变(DR)是目前比较严重的一种致盲眼病,因此,对糖尿病性视网膜病理图像的自动分类具有重要的临床应用价值。基于人工分类视网膜图像的方法存在判别性特征提取困难、分类性能差、耗时费力且很难得到客观统一的医疗诊断等问题,为此,提出一种基于卷积神经网络和分类器的视网膜病理图像自动分类系统。方法 首先,结合现有的视网膜图像的特点,对图像进行去噪、数据扩增、归一化等预处理操作;其次,在AlexNet网络的基础上,在网络的每一个卷积层和全连接层前引入一个批归一化层,得到一个网络层次更复杂的深度卷积神经网络BNnet。BNnet网络用于视网膜图像的特征提取网络,对其训练时采用迁移学习的策略利用ILSVRC2012数据集对BNnet网络进行预训练,再将训练得到的模型迁移到视网膜图像上再学习,提取用于视网膜分类的深度特征;最后,将提取的特征输入一个由全连接层组成的深度分类器将视网膜图像分为正常的视网膜图像、轻微病变的视网膜图像、中度病变的视网膜图像等5类。结果 实验结果表明,本文方法的分类准确率可达0.93,优于传统的直接训练方法,且具有较好的鲁棒性和泛化性。结论 本文提出的视网膜病理图像分类框架有效地避免了人工特征提取和图像分类的局限性,同时也解决了样本数据不足而导致的过拟合问题。  相似文献   

16.
袁星星  吴秦 《计算机科学》2021,48(4):174-179
遥感图像中的目标具有密集性、多尺度和多角度等特性,这使得遥感图像多类别目标检测成为一项具有挑战性的课题。因此,文中提出了一种新的端到端的遥感图像目标检测框架。该框架通过提取显著性特征和不同卷积通道之间的相互关系来增强目标信息,抑制非目标信息,从而提高特征的表示能力。同时,在不增加模型参数的情况下,在卷积模块中添加多尺度特征模块来捕获更多的上下文信息。为了解决遥感图像中目标角度多变这一问题,该框架在区域建议网络中加入了角度信息,得到有角度的矩形候选框,并在训练过程中添加注意力损失函数来引导网络学习显著性特征。该框架在公开的遥感图像数据集上进行了相关验证,在水平任务框和方向任务框上的实验结果证明了所提方法的有效性。  相似文献   

17.
Breakthrough performances have been achieved in computer vision by utilizing deep neural networks. In this paper we propose to use random forest to classify image representations obtained by concatenating multiple layers of learned features of deep convolutional neural networks for scene classification. Specifically, we first use deep convolutional neural networks pre-trained on the large-scale image database Places to extract features from scene images. Then, we concatenate multiple layers of features of the deep neural networks as image representations. After that, we use random forest as the classifier for scene classification. Moreover, to reduce feature redundancy in image representations we derived a novel feature selection method for selecting features that are suitable for random forest classification. Extensive experiments are conducted on two benchmark datasets, i.e. MIT-Indoor and UIUC-Sports. Obtained results demonstrated the effectiveness of the proposed method. The contributions of the paper are as follows. First, by extracting multiple layers of deep neural networks, we can explore more information of image contents for determining their categories. Second, we proposed a novel feature selection method that can be used to reduce redundancy in features obtained by deep neural networks for classification based on random forest. In particular, since deep learning methods can be used to augment expert systems by having the systems essentially training themselves, and the proposed framework is general, which can be easily extended to other intelligent systems that utilize deep learning methods, the proposed method provide a potential way for improving performances of other expert and intelligent systems.  相似文献   

18.
基于深度卷积神经网络的物体识别算法   总被引:2,自引:0,他引:2  
针对传统物体识别算法中人工设计出来的特征易受物体形态多样性、光照和背景的影响,提出了一种基于深度卷神经网络的物体识别算法。该算法基于NYU Depth V2场景数据库,首先将单通道深度信息转换为三通道;再用训练集中的彩色图片和转换后的三通道深度图片分别微调两个深度卷积神经网络模型;然后用训练好的模型对重采样训练集中的彩色和深度图片提取模型第一个全连接层的特征,并将两种模态的特征串联起来,训练线性支持向量机(LinSVM);最后将所提算法应用到场景理解任务中的超像素特征提取。所提方法在测试集上的物体分类准确度可达到91.4%,比SAE-RNN方法提高4.1个百分点。实验结果表明所提方法可提取彩色和深度图片高层特征,有效提高物体分类准确度。  相似文献   

19.
目的 深度学习已经大量应用于合成孔径宽达(SAR)图像目标识别领域,但大多数工作是基于MSTAR数据集的标准操作条件展开研究。当将深度学习应用于同类含变体目标时,例如T72子类,由于目标间差异小,所以仍存在着较大的挑战。本文从极大限度地保留SAR图像输入特征出发,设计一种适用于SAR变体目标识别的深度卷积神经网络结构。方法 设计网络主要由多尺度空间特征提取模块和DenseNet中的稠密块、转移层构成。多尺度特征提取模块置于网络底层,通过使用尺寸分别为1×1、3×3、5×5、7×7、9×9的卷积核,提取丰富空间特征的同时保留输入图像信息。为使输入图像信息更加有效地向后传递,基于DenseNet中的稠密块和转移层进行后续网络层设计。在对训练样本进行样本扩充基础上,分析了输入图像分辨率及目标存在平移和不同噪声水平等情况对模型识别精度的影响,与用于SAR图像目标识别的深度模型识别精度在标准操作条件下进行了对比分析。结果 实验结果表明,对T72 8类变体目标进行分类,设计的模型能够取得95.48%的识别精度,在存在目标平移和不同噪声水平情况下,平均识别精度分别达到了94.61%和86.36%。对10类目标(包括不含变体和含变体情况)在进行数据增强的情况下进行模型训练与测试,分别达到了99.38%和98.81%的识别精度,略优于其他对比模型结构识别精度。结论 提出的模型可以充分利用输入图像以及各卷积层输出的特征,学习目标图像的细节差异,不仅适用于SAR图像变体目标的识别任务,同时在标准操作条件下的识别任务也取得了较高的识别结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号