共查询到20条相似文献,搜索用时 46 毫秒
1.
一种适于求解离散问题的二进制粒子群优化算法è 总被引:4,自引:1,他引:4
分析了二进制粒子群优化算法(BPSO)的缺陷.为克服此缺陷提出了"粒子位置的双重结构编码"的概念,以此为基础给出一种新的二进制粒子群优化算法--具有双重结构编码的二进制粒子群优化算法(简称DS_BPSO).DS_BPSO算法既保留了PSO的优点,又非常适用于求解离散优化问题.对随机3-SAT测试实例的数值计算表明:该算法的性能远远超过BPSO算法. 相似文献
2.
针对协同微粒群优化存在的停滞现象,提出了一种新的基于粒子空间扩展的协同微粒群优化算法。该算法通过引入粒子半径来确定粒子间是否发生相互碰撞,如果两个粒子一旦发生碰撞,则按预先设定的位置更新公式跳出原来的位置,从而避免陷入停滞状态。对三个典型函数的测试结果表明,新算法不仅能够有效地克服了停滞现象,而且显著提高了搜索更优解的能力和鲁棒性。 相似文献
3.
一种自适应扩展粒子群优化算法 总被引:9,自引:1,他引:9
高鹰 《计算机工程与应用》2006,42(15):12-15
在粒子群优化算法的基础上,首先把粒子群优化算法的速度更新式中的个体最优位置用粒子群中所有个体最优位置的平均值代替,得到扩展粒子群优化算法;然后,建立了加速系数和粒子群中所有粒子的平均适应度与整体最优位置适应度之差的一种非线性函数关系,得到自适应加速系数扩展粒子群优化算法。由于新的算法利用了所有个体最优粒子的信息,并在进化过程中通过建立的非线性时变加速系数自适应地调整“认知”部分和“社会”部分对粒子的影响,从而提高了算法的收敛速度和精度。4个基准测试函数的对比实验结果说明自适应扩展粒子群优化算法的有效性和优良性能。 相似文献
4.
一种基于粒子群优化的多目标优化算法 总被引:5,自引:2,他引:5
论文提出了一种基于粒子群的多目标优化算法,该算法采用Pareto支配关系来更新粒子的个体最优值和局部最优值,用存储池保存搜索过程中发现的非支配解;采用聚类算法裁剪非支配解,以保持解的分布性能;采用动态惯性权重法来平衡粒子群对解空间的局部搜索和全局搜索,以提高算法的全局收敛性能。实验结果表明,论文算法是有效的,能有效的求解多种多目标优化问题。 相似文献
5.
6.
7.
随机优化的PSO只利用了进化过程中的上一时刻t的速度v(t)和位置x(t)信息,以及个体最优值Pi和群体最优值Pg,缺乏对待优化目标函数特征的充分认识,导致了后期进化过程的长期停滞现象。PSO在长期进化过程中,尤其是在经历了大量函数评估次数的进化后期,待优化的目标函数的性态特征可以从进化迭代过程信息中得到了解。通过采集学习PSO进化过程中的目标函数的解分布特征信息,使PSO可以利用这些特征信息来控制部分粒子的重新初始化过程和交叉选择过程,以及在参数选择中平衡探索模式和开采模式。实验结果表明,利用了进化过程信息的PSO可以增加种群的多样性,从而获得更高的优化精度和更少的期望迭代次数,虽然其轻微地增加了进化过程特征采集的时间和空间复杂性。 相似文献
8.
一种基于差异演化变异的粒子群优化算法 总被引:4,自引:0,他引:4
为了保持粒子种群的多样性而避免发生“早熟”的问题,提出一种基于差异演化变异的粒子群优化算法(PSO),该方法通过粒子聚集性判断如果粒子群中的粒子过于聚集,则使用差异演化算法对PSO算法中各个粒子的自身历史最佳位置进行变异,以实现保持粒子群种群多样性的目的。对4种常用函数的优化问题进行测试并进行比较,结果表明:所改进的粒子群优化算法比标准粒子群优化算法更容易找到全局最优解,优化效率和优化性能明显提高。 相似文献
9.
研究粒子群优化算法.传统的粒子群算法采用实数编码,收敛速度慢.为了提高收敛速度,提出了一种混沌编码的粒子群优化算法.混沌编码作为一种全新的数学编码方式,更能准确地表达编码对象的多样性,将混沌编码应用到粒子群优化算法中,使算法在初期的搜索区域更大,更快找到全局最优解.把混沌编码的粒子群算法与BP算法相结合用来优化神经网络.利用混沌编码的粒子群算法快速找到全局最优位置的邻域,然后再用BP算法进行局部寻优,收敛到全局最优位置.仿真结果证明混沌编码的粒子群神经网络比实数编码的粒子群神经网络分类收敛速度更快,验证了算法的有效性. 相似文献
10.
11.
以保证全局收敛的随机微粒群算法为基础,文章提出了一种双群体随机微粒群算法——DB-SPSO。该方法采用两个群体同时进化,一个群体在进化过程中所出现的停止微粒由另一群体的微粒来代替,并和此群体中其余的微粒一起继续进化。通过对此算法的参数适用范围及收敛率进行讨论,给出了此算法的适用范围。其仿真结果表明:对于单峰函数和多峰函数,此算法都能够取得较好的优化效果。 相似文献
12.
本文介绍了粒子群优化算法PSO中的多目标优化的粒子群算法及其应用,并将其运用在防守对方多个前锋球员的进攻威胁,以粒子群算法随机性来适应不断变化的形势。 相似文献
13.
14.
ZHANG Jie 《数字社区&智能家居》2008,(33)
围绕微粒群(PSO)算法的原理、特点、改进、应用等方面进行全面综述,并对其在理论研究和技术应用两方面的研究现状和未来的发展方向进行综述。 相似文献
15.
16.
李剑 《计算机与数字工程》2009,37(7):13-16
为了提高微粒群算法优化高维目标的性能,采用了个体惯性权重自适应调整的微粒群算法,其中每个微粒拥有属于个体的惯性权重。通过对每个微粒的适应值进行评价对惯性权重动态和自适应,以加快其收敛速度并逃离局部最优。为了增强搜索性能,基于高斯变异和随机变异的变异算子被引入。该方法以及其他3种不同微粒群优化算法对4个经典函数在100、200和400维数下进行仿真的结果比较证明此算法在解决高维数目标时具有良好性能。 相似文献
17.
基于粒子群优化算法的系统可靠性优化 总被引:1,自引:0,他引:1
刘家骏 《计算机与数字工程》2012,40(4):6-7,14
系统可靠性优化问题是典型的NP难题,建立了可靠性冗余优化模型,采用粒子群优化算法对其进行求解。通过对其它文献中仿真实例的计算和结果对比,表明了算法对求解可靠性优化问题的可行性和有效性。 相似文献
18.
粒子群优化算法(particle swarm optimization,PSO)是一种新兴的优化技术,其思想来源于人工生命和演化计算理论。PSO算法具有简单、易实现、可调参数少等特点,在很多领域得到了广泛应用。但PSO算法存在早熟收敛问题。为了克服粒子群优化算法的早熟收敛问题,提出了一种旨在保持种群多样性的改进PSO(IPSO)算法,以提高PSO算法摆脱局部极小点的能力。通过对3种Benchmark函数的测试,结果表明IPSO算法不仅具有较快的收敛速度、有效的全局收敛性能,而且还具有良好的稳定性。 相似文献
19.
粒子群优化算法(particle swarm optimization,PSO)是一种新兴的优化技术,其思想来源于人工生命和演化计算理论。PSO算法具有简单、易实现、可调参数少等特点,在很多领域得到了广泛应用。但PSO算法存在早熟收敛问题。为了克服粒子群优化算法的早熟收敛问题,提出了一种旨在保持种群多样性的改进PSO(IPSO)算法,以提高PSO算法摆脱局部极小点的能力。通过对3种Benchmark函数的测试,结果表明IPSO算法不仅具有较快的收敛速度、有效的全局收敛性能,而且还具有良好的稳定性。 相似文献
20.
华欣 《电脑编程技巧与维护》2009,(24):16-17,21
粒子群优化算法是一种启发式全局优化技术,一种基于群智能的演化计算方法。本文给出了多种改进形式以及与其他算法的比较,并提出了未来可能的研究方向。 相似文献