首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 136 毫秒
1.
In this work, we introduce a multiagent architecture called the MultiAGent Metaheuristic Architecture (MAGMA) conceived as a conceptual and practical framework for metaheuristic algorithms. Metaheuristics can be seen as the result of the interaction among different kinds of agents: The basic architecture contains three levels, each hosting one or more agents. Level-0 agents build solutions, level-1 agents improve solutions, and level-2 agents provide the high level strategy. In this framework, classical metaheuristic algorithms can be smoothly accommodated and extended. The basic three level architecture can be enhanced with the introduction of a fourth level of agents (level-3 agents) coordinating lower level agents. With this additional level, MAGMA can also describe, in a uniform way, cooperative search and, in general, any combination of metaheuristics. We describe the entire architecture, the structure of agents in each level in terms of tuples, and the structure of their coordination as a labeled transition system. We propose this perspective with the aim to achieve a better and clearer understanding of metaheuristics, obtain hybrid algorithms, suggest guidelines for a software engineering-oriented implementation and for didactic purposes. Some specializations of the general architecture will be provided in order to show that existing metaheuristics [e.g., greedy randomized adaptive procedure (GRASP), ant colony optimization (ACO), iterated local search (ILS), memetic algorithms (MAs)] can be easily described in our framework. We describe cooperative search and large neighborhood search (LNS) in the proposed framework exploiting level-3 agents. We show also that a simple hybrid algorithm, called guided restart ILS, can be easily conceived as a combination of existing components in our framework.  相似文献   

2.
Application of metaheuristics within operations management — Potential and limitations of software reuse Business reality comprises a large variety of well structured problems (e.g. in production and logistics management), for which effective and efficient solution procedures are available from research. This includes metaheuristics such as iterative local search, tabu search and evolutionary algorithms. However, the implementation of these quantitative solution procedures as part of decision support systems usually requires problem-specific adaptations. To simplify this task we developed an application framework in C++, which represents various metaheuristics as reusable software components. These components can be used in arbitrary application domains. The framework clearly simplifies the effective practical application of metaheuristics. Nevertheless, a certain effort may be unavoidable if one aims at high-quality solutions in novel applications.  相似文献   

3.
Although the community of nature-inspired computing has witnessed a wide variety of metaheuristics, it often requires considerable effort to adapt them to different combinatorial optimization problems (COPs), and few studies have been devoted to reducing this burden. This paper proposes a systematic approach that consists of a set of basic steps and strategies for adapting water wave optimization (WWO), a simple and generic metaheuristic, to concrete heuristic algorithms for different COPs. Taking advantages of the generic algorithmic framework, designers can only focus on adapting the prorogation operator and the wavelength calculation method according to the combinatorial properties of the given problem, and thus easily derive efficient problem-solving algorithms. We illustrate and test our approach on the flow-shop scheduling problem (FSP), the single-objective multidimensional knapsack problem (MKP), and the multi-objective MKP, and then present an application to a machine utilization optimization problem for a large manufacturing enterprise. The results demonstrate that our approach can derive concrete algorithms that are competitive to the state-of-the-arts. Our approach also provides insights into the adaptation of other metaheuristics and the development of new metaheuristics for COPs.  相似文献   

4.
ETL执行过程的优化研究   总被引:2,自引:0,他引:2  
提出了一个ETL(Extraction-Transformation-Loading)优化框架并对ETL过程的逻辑优化进行了研究,把优化问题建模成状态空间搜索问题。每个ETL工作流看作一种状态,通过一系列正确的状态变换来构造状态空间,并且提出算法来获得最小执行时间的ETL工作流。理论分析和实践表明其具有良好效果。  相似文献   

5.
Planning problems can be solved with a large variety of different approaches, and a significant amount of work has been devoted to the automation of planning processes using different kinds of methods. This paper focuses on the use of specific local search algorithms for real-world production planning based on experiments with real-world data, and presents an adapted local search guided by evolutionary metaheuristics. To make algorithms efficient, many specifics need to be considered and included in the problem solving. We demonstrate that the use of specialized local searches can significantly improve the convergence and efficiency of the algorithm. The paper also includes an experimental study of the efficiency of two memetic algorithms, and presents a real-world software implementation for the production planning.  相似文献   

6.
Evolutionary algorithms (EAs) are often employed to multiobjective optimization, because they process an entire population of solutions which can be used as an approximation of the Pareto front of the tackled problem. It is a common practice to couple local search with evolutionary algorithms, especially in the context of combinatorial optimization. In this paper a new local search method is proposed that utilizes the knowledge concerning promising search directions. The proposed method can be used as a general framework and combined with many methods of iterating over a neighbourhood of an initial solution as well as various decomposition approaches. In the experiments the proposed local search method was used with an EA and tested on 2-, 3- and 4-objective versions of two well-known combinatorial optimization problems: the travelling salesman problem (TSP) and the quadratic assignment problem (QAP). For comparison two well-known local search methods, one based on Pareto dominance and the other based on decomposition, were used with the same EA. The results show that the EA coupled with the directional local search yields better results than the same EA coupled with any of the two reference methods on both the TSP and QAP problems.  相似文献   

7.
The set k‐covering problem, an extension of the classical set covering problem, is an important NP‐hard combinatorial optimization problem with extensive applications, including computational biology and wireless network. The aim of this paper is to design a new local search algorithm to solve this problem. First, to overcome the cycling problem in local search, the set k‐covering configuration checking (SKCC) strategy is proposed. Second, we use the cost scheme of elements to define the scoring mechanism so that our algorithm can find different possible good‐quality solutions. Having combined the SKCC strategy with the scoring mechanism, a subset selection strategy is designed to decide which subset should be selected as a candidate solution component. After that, a novel local search framework, as we call DLLccsm (diversion local search based on configuration checking and scoring mechanism), is proposed. DLLccsm is evaluated against two state‐of‐the‐art algorithms. The experimental results show that DLLccsm performs better than its competitors in terms of solution quality in most classical instances.  相似文献   

8.
Nowadays, a promising way to obtain hybrid metaheuristics concerns the combination of several search algorithms with strong specialization in intensification and/or diversification. The flexible architecture of evolutionary algorithms allows specialized models to be obtained with the aim of providing intensification and/or diversification. The outstanding role that is played by evolutionary algorithms at present justifies the choice of their specialist approaches as suitable ingredients to build hybrid metaheuristics.This paper focuses on hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification. We first give an overview of the existing research on this topic, describing several instances grouped into three categories that were identified after reviewing specialized literature. Then, with the aim of complementing the overview and providing additional results and insights on this line of research, we present an instance that consists of an iterated local search algorithm with an evolutionary perturbation technique. The benefits of the proposal in comparison to other iterated local search algorithms proposed in the literature to deal with binary optimization problems are experimentally shown. The good performance of the reviewed approaches and the suitable results shown by our instance allow an important conclusion to be achieved: the use of evolutionary algorithms specializing in intensification and diversification for building hybrid metaheuristics becomes a prospective line of research for obtaining effective search algorithms.  相似文献   

9.
Local genetic algorithms have been designed with the aim of providing effective intensification. One of their most outstanding features is that they may help classical local search-based metaheuristics to improve their behavior. This paper focuses on experimentally investigating the role of a recent approach, the binary-coded local genetic algorithm (BLGA), as context-independent local search operator for three local search-based metaheuristics: random multi-start local search, iterated local search, and variable neighborhood search. These general-purpose models treat the objective function as a black box, allowing the search process to be context-independent. The results show that BLGA may provide an effective and efficient intensification, not only allowing these three metaheuristics to be enhanced, but also predicting successful applications in other local search-based algorithms. In addition, the empirical results reported here reveal relevant insights on the behavior of classical local search methods when they are performed as context-independent optimizers in these three well-known metaheuristics.  相似文献   

10.
This paper presents a recursive deepening hybrid strategy to solve real-parameter optimization problems. It couples a local search technique with a quantum-inspired evolutionary algorithm. In order to adapt the quantum-inspired evolutionary algorithm for continuous optimization without losing the states superposition property, a suitable sampling of the search space that tightens recursively and an integration of a uniformly generated random part after measurement have been utilized. The use of local search provides, for each search window, a good exploitation of the quantum inspired generated solution's neighbourhood. The proposed approach has been tested through the reference black-box optimization benchmarking framework. The comparison of the obtained results with those of some state-of-the-art algorithms has shown its actual effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号