首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
In the present study a methodology to perform large-eddy simulations around complex boundaries on fixed Cartesian grids is presented. A novel interpolation scheme which is applicable to boundaries of arbitrary shape, does not involve special treatments, and allows the accurate imposition of the desired boundary conditions is introduced. A method to overcome the problems associated with the computation of the subgrid scale terms near solid boundaries is also discussed. A detailed study on the accuracy and efficiency of the method is carried out for the cases of Stokes flow around a cylinder in the vicinity of a moving plate, the three-dimensional flow around a circular cylinder, and fully developed turbulent flow in a plane channel with a wavy wall. It is demonstrated that the method is second-order accurate, and that the solid boundaries are mimicked “exactly” on the Cartesian grid within the overall accuracy of the scheme. For all cases under consideration the results obtained are in very good agreement with analytical and numerical data.  相似文献   

2.
The quality of eddy-resolving turbulence simulations strongly depends on appropriate inflow conditions. In most cases they have to be time-dependent and satisfy certain conditions for the first (mean velocities) and second-order moments (Reynolds stresses) as well as concerning suitable length scales. To mimic a physically realistic incoming flow, synthetically generated turbulent velocity fluctuations superimposed on the mean velocity field are a valuable solution. However, the resolution of the grid near the inlet has to be sufficiently fine to avoid excessive damping of the turbulence intensity. In order to circumvent this problem, the injection of synthetically generated inflow data not at the inlet itself but inside the flow domain near the area of interest, where the grid is typically much finer, is an elegant loophole. In the present study two different injection techniques based on a source-term formulation are analyzed and evaluated. In addition to these techniques the injected data are weighted by a Gaussian distribution defining the influence area. In the recent work the definition of the influence area is enhanced compared to the initial version of Schmidt and Breuer (2017) extending the application range. The case of a rather small influence area in comparison with the grid cell size is now tackled which is often relevant for industrial applications.The flow past a wall-mounted hemisphere is chosen as test case. The bluff body is exposed to a thick turbulent boundary layer at Re = 50,000. The generation of the turbulent velocity fluctuations in the present investigation relies on the digital filter concept, but the injection techniques evaluated are not restricted to this inflow generator. The synthetic turbulent velocity fluctuations are injected about one diameter upstream of the hemisphere. Wall-resolved large-eddy simulations are carried out for two grid resolutions and the corresponding results are analyzed and compared with the reference measurements by Wood et al. (2016). Finally, one injection technique is found to be clearly superior to the other, since it guarantees the correct level of the velocity fluctuations and the reproduction of the autocorrelations.  相似文献   

3.
The influence of the filter shape on the effective scale separation and the numerical accuracy of large-eddy simulations based on relaxation filtering (LES-RF) is investigated. The simulation of the turbulent flow development of a high-Reynolds number low-subsonic compressible mixing layer is performed using the LES-RF procedure, for discrete filters of order 2–10. A reference solution is first obtained using high-order numerical algorithms and shows a good agreement with experimental data found in the literature. Discrete filters of order 2, 4, 6, 8 and 10 are then considered to study the influence of the filter shape on numerical results. The 2nd-order scheme turns out to be too dissipative and prevents the emergence of unsteady motions within the mixing layer. For higher order schemes, from 4th- to 10th-order, the flow solutions are turbulent but exhibit mean flows and turbulent intensities depending on the filter. The investigation of the one-dimensional kinetic energy spectra then shows that the 4th-order filter may still be too dissipative whereas large scales remain unaffected using the 6th-, 8th- and 10th-order filters. A further study of the kinetic energy spectra nonetheless demonstrates that the effective spatial bandwidth of the LES increases with the order of the filtering scheme. Simulations using the 6th-, 8th- and 10th-order filters, with mesh sizes chosen to provide the same effective LES cut-off wavenumber, are performed and yield similar results. It is hence found that the value of the effective LES cut-off wavenumber, rather than to the filter shape itself, is mainly responsible for the discrepancies between the flow statistics obtained using different filters. One may conclude that filter shape independence is consequently achieved in the present LES of a mixing layer.  相似文献   

4.
When modeling the hydrodynamics of nanofluidic systems, it is often essential to include molecular-level information such as molecular fluctuations. To this effect, we present a mesoscopic approach which combines a fluctuating hydrodynamics formulation with an efficient implementation of Electroosmotic flow (EOF) in the small Debye length limit. The resulting approach, whose major ingredient is Dissipative Particle Dynamics, is sufficiently coarse-grained to allow efficient simulation of the hydrodynamics of micro/nanofluidic devices of sizes that are too large to be simulated by ab initio methods such as Molecular Dynamics. Within our formulation, EOF is efficiently generated using the recently proven similitude between velocity and electric field under appropriate conditions. More specifically, EOF is generated using an effective boundary condition, akin to a moving wall, thus avoiding evaluation of the computationally expensive electrostatic forces. Our method is used for simulating EOFs and DNA molecular sieving in simple and complex two-dimensional (2D) and 3D geometries frequently used in nano-fluidic devices. The numerical data obtained from our model are in very good agreement with theoretical results.  相似文献   

5.
Atomistic simulations such as molecular dynamics and Monte Carlo are widely used for understanding the material behavior at a more fundamental level, e.g., at the atomic level. However, there still exist limitations in the variety of material systems, specimen size and simulation time. This article briefly outlines the formalism and performance of the second nearest-neighbor modified embedded-atom method, an interatomic potential formalism applicable to a wide range of materials systems. Recent progresses made to overcome the inherent size and time limitations of atomistic simulations are also introduced along with the challenges still remaining in extending their applicability. Finally, the authors release all the potential parameter sets for elements and alloy systems, and relevant homemade atomistic simulation codes based on the interatomic potential formalism with a user guide.  相似文献   

6.
Turbulent Poiseuille flows inside the square duct are simulated by the large-eddy simulation based on the multilevel Schwarz preconditioned conjugate gradient pressure Poisson solver, which was developed on top of the Portable, Extensible Toolkit for Scientific Computation (PESTc). The impact of the five different matrix reordering techniques for an incomplete LU (ILU) decomposition as a subdomain solver on the overall performance of Schwarz-type preconditioners for the solution of the pressure Poisson equation are studied. The numerical results indicate that ILU of two-level fill-ins with the reverse Cuthill–McKee matrix ordering technique produces the best performance. Further investigation on the parallel performance of different multilevel methods was also conducted for two different problem sizes. It was observed that the computational cost saturates at around six-level for both the problem sizes explored. Also, though the one-level method is better for small problem size, for the larger problem size, the six-level method performs best in terms of scalability and compute time; hence, the benefit of a multilevel method is more obviously.  相似文献   

7.
The studies on the mechanisms and performances of the mechanical seals in reactor coolant pumps are very important for the safe operations of the pressurized water reactor power plants.Based on the hydrostatic mechanical seal in reactor coolant pumps,an analytical fluid-solid strong-interaction model is proposed in this paper.According to the design features and operational principles of the seal,an analytical method to calculate the mechanical deformation of the seal assembly is developed based on the ring...  相似文献   

8.
A numerical procedure for an inverse problem of determining unknown source parameter of one-dimensional parabolic equation subject to the specification of the solution at internal point along with the usual initial boundary conditions is considered. By using some transformation the problem is reformulated to a nonlocal parabolic problem. Some numerical examples using the proposed numerical procedure are presented.  相似文献   

9.
Complex Modified Korteweg-deVries Equation is solved numerically using differential quadrature method based on cosine expansion. Three test problems, motion of single solitary wave, interaction of solitary waves and wave generation, are simulated. The accuracy of the method is measured via the discrete root mean square error norm L2, maximum error norm L for the motion of single solitary wave since it has an analytical solution. A rate of convergency analysis for motion of single solitary wave containing both real and imaginary parts is also given. Lowest three conserved quantities are computed for all test problems. A comparison with some earlier works is given.  相似文献   

10.
A physical habitat simulation is a useful tool for assessing the impact of river development or restoration on river ecosystem. Conventional methods of physical habitat simulation use the habitat suitability index models and their success depends largely on how well the model reflects monitoring data. One of preferred habitat suitability index models is habitat suitability curves, which are normally constructed based on monitoring data. However, these curves can easily be affected by the subjective opinion of the expert. This study introduces the ANFIS method for predicting the composite suitability index for use in physical habitat simulations. The ANFIS method is a hybrid type of artificial intelligence technique that combines the artificial neural network and fuzzy logic. The method is known to be a powerful approach especially for developing nonlinear relationships between input and output datasets.In this study, the ANFIS method was used to predict the composite suitability index for the physical habitat simulation of a 2.5 km long reach of the Dal River in Korea. Zacco platypus was chosen as the target fish of the study area. A 2D hydraulic simulation was performed, and the hydraulic model was validated by comparing the measured and predicted water surface elevations. The distribution of the composite suitability index predicted by the ANFIS model was compared with that using the habitat suitability curves. The comparisons reveal that the two distributions are similar for various flows. In addition, the distribution of the composite suitability index of the Dal River is computed by the ANFIS method using monitoring data for the other watersheds, namely the Hongcheon River, the Geum River, and the Chogang Stream. The monitoring data for the Chogang Stream, correlation pattern of which was the most similar to that of the Dal River, yielded the distribution of the composite suitability index, which was very close to that obtained using data for the Dal River. This is also supported by the mean absolute percentage error for the difference in the weighted usable areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号