首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
DSMA(差异相似矩阵算法)是一种对信息系统进行属性约简和决策知识提取的方法,它通过矩阵模型直观地体现了各实例间属性的差异性及相似性,并能够快速地提取出各用法的决策属性。本文论述的重点是如何在语料库中提取词语的上下文特征属性信息,再基于该算法获取词语各种用法的决策知识。测试的结果表明了该算法在运行效率上的优越性。  相似文献   

2.
针对现有分类方法未考虑长距离词的语义相关性和文本间潜在主题共享的问题,提出一种基于词-主题-文本异质网络(WTDHN)的短文本分类方法。通过Word2vec训练词的上下文语义向量;构建词相关性矩阵以充足的词共现信息增强短文本各级别语义学;构建以词、主题和文本为节点的异质网络,并采用图卷积学习节点之间的高阶邻域信息,丰富短文本语义。相较于基准分类模型,该方法在五个公开短文本数据集上的分类准确率平均提高1.56%。  相似文献   

3.
文本分类中的特征降维方法研究   总被引:1,自引:0,他引:1  
特征降维是文本分类过程中的一个重要环节,为了提高特征降维的准确率,选出能有效区分文本类别的特征词,提高文本分类的效果,提出了结合文本类间集中度、文本类内分散度和词频类间集中度的特征降维方法。当获取特征词在文本集上的整体评价时,提出了一种新的全局评估函数,用最大值与次大值之差作为最终的评价函数值。实验比较了该方法与传统的特征降维方法,结果表明该方法在中文文本分类中具有较好的降维效果。  相似文献   

4.
文本分类中一种基于正交变换的特征降维方法   总被引:1,自引:1,他引:0  
本文讨论了一种基于正交变换的文本特征降维方法.分析了基于特征选择和特征抽取的特征降维方法各自特点,借助矩阵的分解论证了基于Fisher准则函数的特征降维模式的原理与理论基础,讨论了PCA与SVD两种模式的相互关系.实验结果表明这种特征降维模式在文本分类的准确性方面效果较好.  相似文献   

5.
基于降维的短信文本语义分类及主题提取   总被引:5,自引:2,他引:3  
为了对中文短信文本进行快速的舆情预测,利用对同义关系词汇归并和上下位词汇聚焦以及种子词汇的确定来实现对短信文本空间的降维,而后又给出了海量短信文本分类的算法及分类主题的提取。实验表明该方法可以大大提高舆情预测的速度和质量。  相似文献   

6.
文本分类中一种混合型特征降维方法   总被引:5,自引:1,他引:4  
提出一种基于特征选择和特征抽取的混合型文本特征降维方法,分析基于选择和抽取的特征降维方法各自的特点,借助特征项的类别分布差异信息对特征集进行初步选择。使用一种新的基于PCA的特征抽取方法对剩余特征集进行二次抽取,在最大限度减少信息损失的前提下实现了文本特征的有效降维。对文本的分类实验结果表明,该特征降维方法具有良好的分类效果。  相似文献   

7.
郭志军 《网友世界》2014,(17):156-157
通过相似矩阵与对角阵与非对角阵之间相似的证明方法的探析,使问题得以归类,对不同情况下矩阵相似的证明进行讨论。  相似文献   

8.
特征向量的高维性以及训练样本分布不均影响文本分类器性能。提出了一种聚类模式下的KNN改进方法。首先使用一种改进的聚类方法对文本特征集进行初步筛选,随后使用一种基于类别的改进KNN分类器进行分类,减少了噪声样本对测试样本类别判定的干扰。试验结果表明本文提出的分类模型在分类效率上得到提高。  相似文献   

9.
对高维特征集的降维是文本分类的一个主要问题。在分析现有特征降维方法的基础上,借助《知网》提出一种新的二次降维方法:采用传统的特征选择方法提取一个候选特征集合;利用《知网》对候选集合中的特征项进行概念映射,把大量底层分散的原始特征项替换成少量的高层概念进行第二次特征降维。实验表明,这种方法可以在减少文本语义信息丢失的前提下,有效地降低特征空间维数,提升文本分类的准确度。  相似文献   

10.
文本分类中的高维数据和噪声一直是影响文本分类准确率的主要因素,特征选择和特征提取是降维和去噪的主要手段.本文提出根据词的类间概率分布方差和文档分布方差改进TF-IDF的特征选择方法(VAR-TF-IDF),调整Word2vec中的CBOW+HS词向量训练框架,用特征词词向量的叠加作为文本的特征向量,有效地提高了文本分类的准确率和召回率.实验算例证明了所提方案的有效性.  相似文献   

11.
统计模式识别中的维数削减与低损降维   总被引:31,自引:0,他引:31  
较为全面地回顾了统计模式识别中常用的一些特征选择、特征提取等主流特征降维方法,介绍了它们各自的特点及其适用范围,在此基础上,提出了一种新的基于最优分类器——贝叶斯分类器的可用于自动文本分类及其它大样本模式分类的特征选择方法——低损降维.在标准数据集Reuters-21578上进行的仿真实验结果表明,与互信息、χ^2统计量以及文档频率这三种主流文本特征选择方法相比,低损降维的降维效果与互信息、χ^2统计量相当,而优于文档频率.  相似文献   

12.
LDA没有考虑到数据输入,在原始输入空间上对所有词进行主题标签,因对非作用词同样分配主题,致使主题分布不精确。针对它的不足,提出了一种结合LSI和LDA的特征降维方法,预先采用LSI将原始词空间映射到语义空间,再根据语义关系筛选出原始特征集中关键的特征,最后通过LDA模型在更小、更切题的文档子集上采样建模。对复旦大学中文语料进行文本分类,新方法的分类精度较单独使用LDA模型的效果提高了1.50%,实验表明提出的LSI_LDA模型在文本分类中有更好的分类性能。  相似文献   

13.
基于机器学习的文本分类技术研究进展   总被引:107,自引:1,他引:106       下载免费PDF全文
苏金树  张博锋  徐昕 《软件学报》2006,17(9):1848-1859
文本自动分类是信息检索与数据挖掘领域的研究热点与核心技术,近年来得到了广泛的关注和快速的发展.提出了基于机器学习的文本分类技术所面临的互联网内容信息处理等复杂应用的挑战,从模型、算法和评测等方面对其研究进展进行综述评论.认为非线性、数据集偏斜、标注瓶颈、多层分类、算法的扩展性及Web页分类等问题是目前文本分类研究的关键问题,并讨论了这些问题可能采取的方法.最后对研究的方向进行了展望.  相似文献   

14.
基于国际专利分类号的层次结构,利用自身的类别描述信息,建立了不同层次的类别特征向量,结合现有专利进行修正训练,分别在各层次上采用经典的KNN算法实现专利的自动分类。实验结果表明:该方法的分类效果在部、大类、小类层次上表现较好。经过修正训练后的分类性能有所提高。  相似文献   

15.
基于质心的文本分类算法   总被引:4,自引:1,他引:3  
当文本集较分散或出现多峰值时,基于质心的文本分类算法分类效果很差。针对该问题提出一种改进的文本分类算法,与基于质心的经典分类算法相比,其性能较高。在香港慧科讯业公司提供的文本分类语料库上的测试结果表明,该算法的效率和精度满足要求。  相似文献   

16.
特征降维是文本分类过程中的一个重要环节。在现有特征选择方法的基础上,综合考虑特征词在正类和负类中的分布性质,综合四种衡量特征类别区分能力的指标,提出了一个新的特征选择方法,即综合比率(CR)方法。实验采用K-最近邻分类算法(KNN)来考查CR方法的有效性,实验结果表明该方法能够取得比现有特征选择方法更优的降维效果。  相似文献   

17.
本文在对文本分类的问题,关键技术及系统结构进行介绍的基础上,详细阐述了一种利用带动力项的BP神经网络作为分类器的中文文本自动分类方法.该法采用归一化TFIDF算法对特征向量进行权值计算,并使用期望交叉熵统计方法对特征向量集进行精简.此外,我们在TanCorp12数据集上测试了特征项数目和训练次数对于分类器的宏平均和微平均性能的影响.  相似文献   

18.
一种面向大规模图像库的降维索引新方法   总被引:2,自引:0,他引:2  
针对图像的72维HSV颜色特征,提出了一种新的降维方法。该方法在降维的过程中充分保留了图像颜色的本征特性。在降维的基础上,建立了一个新的索引机制,并以此加速大规模图像库的基于内容检索的进程。实验证明,该方法是行之有效的。  相似文献   

19.
文本分类是文本挖掘的一个重要组成部分,是信息搜索领域的一项重要研究课题。该文提出一种基于文章标题信息的汉语自动文本分类方法,在HNC理论的领域概念框架下,通过标题信息所蕴涵的领域信息词语激活对应的HNC领域,实现文本的自动分类。实验证明,该方法与采用SVM算法进行文本分类的方法比较,测试速度和分类平均准确率明显提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号