首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
There typically exist different and often conflicting control objectives, e.g., reference tracking, robustness and economic performance, in many chemical processes. The current work considers the multi-objective control problems of continuous-time nonlinear systems subject to state and input constraints and multiple conflicting objectives. We propose a new multi-objective nonlinear model predictive control (NMPC) design within the dual-mode paradigm, which guarantees stability and constraint satisfaction. The notions of utopia point and compromise solution are used to reconcile the confliction of the multiple objectives. The designed controller minimizes the distance of its cost vector to a vector of independently minimized objectives, i.e., the steady-state utopia point. Recursive feasibility is established via a particular terminal region formulation while stabilizing the closed-loop system to the compromise solution via the dual-mode control principle. In order to derive the terminal region as large as possible, a terminal control law with free-parameters is constructed by using the control Lyapunov functions (CLFs) technique. Two examples of multi-objective control of a CSTR and a free-radical polymerization process are used to illustrate the effectiveness of the new multi-objective NMPC and to compare their performance.  相似文献   

2.
Nonlinear model predictive control (NMPC) algorithms are based on various nonlinear models. A number of on-line optimization approaches for output-feedback NMPC based on various black-box models can be found in the literature. However, NMPC involving on-line optimization is computationally very demanding. On the other hand, an explicit solution to the NMPC problem would allow efficient on-line computations as well as verifiability of the implementation. This paper applies an approximate multi-parametric nonlinear programming approach to explicitly solve output-feedback NMPC problems for constrained nonlinear systems described by black-box models. In particular, neural network models are used and the optimal regulation problem is considered. A dual-mode control strategy is employed in order to achieve an offset-free closed-loop response in the presence of bounded disturbances and/or model errors. The approach is applied to design an explicit NMPC for regulation of a pH maintaining system. The verification of the NMPC controller performance is based on simulation experiments.  相似文献   

3.
In this paper, a novel hierarchical multirate control scheme for nonlinear discrete‐time systems is presented, consisting of a robust nonlinear model predictive controller (NMPC) and a multirate sliding mode disturbance compensator (MSMDC). The proposed MSMDC acts at a faster rate than the NMPC in order to keep the system as close as possible to the nominal trajectory predicted by NMPC despite model uncertainties and external disturbances. The a priori disturbance compensation turns out to be very useful in order to improve the robustness of the NMPC controller. A dynamic input allocation between MSMDC and NMPC allows to maximize the benefits of the proposed scheme that unites the advantages of sliding mode control (strong reduction of matched disturbances, low computational burden) to those of NMPC (optimality, constraints handling). Sufficient conditions required to guarantee input‐to‐state stability and constraints satisfaction by the overall scheme are also provided. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This paper briefly reviews development of nonlinear model predictive control (NMPC) schemes for finite horizon prediction and basic computational algorithms that can solve the stable real‐time implementation of NMPC in space state form with state and input constraints. In order to ensure stability within a finite prediction horizon, most NMPC schemes use a terminal region constraint at the end of the prediction horizon — a particular NMPC scheme using a terminal region constraint, namely quasi‐infinite horizon, that guarantees asymptotic closed‐loop stability with input constraints is presented. However, when nonlinear processes have both input and state constraints, difficulty arises from failure to satisfy the state constraints due to constraints on input. Therefore, a new NMPC scheme without a terminal region constraint is developed using soften state constraints. A brief comparative simulation study of two NMPC schemes: quasi‐infinite horizon and soften state constraints is done via simple nonlinear examples to demonstrate the ability of the soften state constraints scheme. Finally, some features of future research from this study are discussed.  相似文献   

5.
Robust receding horizon control of constrained nonlinear systems   总被引:1,自引:0,他引:1  
We present a method for the construction of a robust dual-mode, receding horizon controller which can be employed for a wide class of nonlinear systems with state and control constraints and model error. The controller is dual-mode. In a neighborhood of the origin, the control action is generated by a linear feedback controller designed for the linearized system. Outside this neighborhood, receding horizon control is employed. Existing receding horizon controllers for nonlinear, continuous time systems, which are guaranteed to stabilize the nonlinear system to which they are applied, require the exact solution, at every instant, of an optimal control problem with terminal equality constraints. These requirements are considerably relaxed in the dual-mode receding horizon controller presented in this paper. Stability is achieved by imposing a terminal inequality, rather than an equality, constraint. Only approximate minimization is required. A variable time horizon is permitted. Robustness is achieved by employing conservative state and stability constraint sets, thereby permitting a margin of error. The resultant dual-mode controller requires considerably less online computation than existing receding horizon controllers for nonlinear, constrained systems  相似文献   

6.
This article addresses the problem of designing a sensor fault‐tolerant controller for an observation process where a primary, controlled system observes, through a set of measurements, an exogenous system to estimate the state of this system. We consider sensor faults captured by a change in a set of sensor parameters affecting the measurements. Using this parametrization, we present a nonlinear model predictive control (NMPC) scheme to control the observation process and actively detect and estimate possible sensor faults, with adaptive controller reconfiguration to optimize the use of the remaining sensing capabilities. A key feature of the proposed scheme is the design of observability indices for the NMPC stage cost to improve the observability of both the state of the exogenous system and the sensor fault parameters. The effectiveness of the proposed scheme is illustrated through numerical simulations.  相似文献   

7.
The implementation of model predictive control (MPC) requires to solve an optimization problem online. The computation time, often not negligible especially for nonlinear MPC (NMPC), introduces a delay in the feedback loop. Moreover, it impedes fast sampling rate setting for the controller to react to uncertainties quickly. In this paper, a dual time scale control scheme is proposed for linear/nonlinear systems with external disturbances. A pre-compensator works at fast sampling rate to suppress uncertainty, while the outer MPC controller updates the open loop input sequence at a slower rate. The computation delay is explicitly considered and compensated in the MPC design. Four robust MPC algorithms for linear/nonlinear systems in the literature are adopted and tailored for the proposed control scheme. The recursive feasibility and stability are rigorously analysed. Three simulation examples are provided to validate the proposed approaches.  相似文献   

8.
考虑具有状态和控制约束的仿射非线性系统多目标安全控制问题,本文提出一种保证安全和稳定的多目标安全模型预测控制(MOSMPC)策略.首先通过理想点逼近方法解决多个控制目标的冲突问题.其次,利用控制李雅普诺夫障碍函数(CLBF)参数化局部控制律,并确定系统不安全域.在此基础上,构造非线性系统的参数化双模控制器,减少在线求解模型预测控制(MPC)优化问题的计算量.进一步,应用双模控制原理和CLBF约束,建立MOSMPC策略的递推可行性和闭环系统的渐近稳定性,并保证闭环系统状态避开不安全域.最后,以加热系统的多目标控制为例,验证了本文策略的有效性.  相似文献   

9.
In this paper, we extend the state-space kriging (SSK) modeling technique presented in a previous work by the authors in order to consider non-autonomous systems. SSK is a data-driven method that computes predictions as linear combinations of past outputs. To model the nonlinear dynamics of the system, we propose the kernel-based state-space kriging (K-SSK), a new version of the SSK where kernel functions are used instead of resorting to considerations about the locality of the data. Also, a Kalman filter can be used to improve the predictions at each time step in the case of noisy measurements. A constrained tracking nonlinear model predictive control (NMPC) scheme using the black-box input-output model obtained by means of the K-SSK prediction method is proposed. Finally, a simulation example and a real experiment are provided in order to assess the performance of the proposed controller.   相似文献   

10.
This paper presents a multivariable nonlinear model predictive control (NMPC) scheme for the regulation of a low-density polyethylene (LDPE) autoclave reactor. A detailed mechanistic process model developed previously was used to describe the dynamics of the LDPE reactor and the properties of the polymer product. Closed-loop simulations are used to demonstrate the disturbance rejection and tracking performance of the NMPC algorithm for control of reactor temperature and weight-averaged molecular weight (WAMW). In addition, the effect of parametric uncertainty in the kinetic rate constants of the LDPE reactor model on closed-loop performance is discussed. The unscented Kalman filtering (UKF) algorithm is employed to estimate plant states and disturbances. All control simulations were performed under conditions of noisy process measurements and structural plant–model mismatch. Where appropriate, the performance of the NMPC algorithm is contrasted with that of linear model predictive control (LMPC). It is shown that for this application the closed-loop performance of the UKF based NMPC scheme is very good and is superior to that of the linear predictive controller.  相似文献   

11.
This work presents the design procedure of a speed controller for a large, lean burn, natural gas engine in island mode operation. This is a disturbance rejection problem with a measured, large disturbance. The core element is a nonlinear model predictive control (NMPC) algorithm that serves as outer loop controller in a cascaded control structure and generates set-points for low level control loops. The NMPC relies on a control oriented model that includes the physics based equations, assumptions on underlying control loops and constraints given by the control requirements. It is shown how to design the running cost such that the stability of the NMPC without terminal cost and constraints can be guaranteed for the nominal system and for the perturbed system exposed to parametric uncertainties and un-modeled dynamics. The functionality of the control strategy is demonstrated in simulation and by experimental results derived at the engine-testbed.  相似文献   

12.
张国银  杨智  谭洪舟 《自动化学报》2008,34(9):1148-1157
针对关系度不确定非线性系统, 基于模型预测控制理论和切换解析非线性模型预测控制(Nonlinear model predictive control, NMPC) 提出了一种非切换的解析NMPC新方法. 论证了在非切换解析NMPC控制律下, 通过坐标变换可以将闭环系统分别在关系度确定和不确定的两个子空间近似为线性系统, 得出非切换解析NMPC使闭环系统稳定的必要条件. 通过仿真实验验证了非切换解析NMPC可以达到很好的响应特性, 无需切换的特征也扩大了其应用范围.  相似文献   

13.
The paper presents a method for enlarging the terminal region of quasi-infinity horizon nonlinear model predictive control (NMPC) for nonlinear systems with constraints. The main technique builds on the fact that terminal controllers are fictitious and never applied to the system in the quasi-infinite horizon NMPC [1]. Based on T-S fuzzy models of nonlinear systems, we show that a parameter-dependent state feedback law exists such that the corresponding value function and its level set can be served as terminal cost and terminal region. The problem of maximizing the terminal region is formulated as a convex optimization problem based on linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

14.
In this paper, a novel adaptive fuzzy control scheme is proposed for a class of uncertain single-input and single-output (SISO) nonlinear time-delay systems with the lower triangular form. Fuzzy logic systems are used to approximate unknown nonlinear functions, then the adaptive fuzzy tracking controller is constructed by combining Lyapunov-Krasovskii functionals and the backstepping approach. The proposed controller guarantees uniform ultimate boundedness of all the signals in the closed-loop system, while the tracking error converges to a small neighborhood of the origin. An advantage of the proposed control scheme lies in that the number of adaptive parameters is not more than the order of the systems under consideration. Finally, simulation studies are given to demonstrate the effectiveness of the proposed design scheme.  相似文献   

15.
A model-based fuzzy gain scheduling technique is proposed. Fuzzy gain scheduling is a form of variable gain scheduling which involves implementing several linear controllers over a partitioned process space. A higher-level rule-based controller determines which local controller is executed. Unlike conventional gain scheduling, a controller with fuzzy gain scheduling uses fuzzy logic to dynamically interpolate controller parameters near region boundaries based on known local controller parameters. Model-based fuzzy gain scheduling (MFGS) was applied to PID controllers to control a laboratory-scale water-gas shift reactor. The experimental results were compared with those obtained by PID with standard fuzzy gain scheduling, PID with conventional gain scheduling, simple PID and a nonlinear model predictive control (NMPC) strategy. The MFGS technique performed comparably to the NMPC method. It exhibited excellent control behaviour over the desired operating space, which spanned a wide temperature range. The other three PID-based techniques were adequate only within a limited range of the same operating space. Due to the simple algorithm involved, the MFGS technique provides a low cost alternative to other computationally intensive control algorithms such as NMPC.  相似文献   

16.
In the process industry, there exist many systems which can be approximated by a Hammerstein model. Moreover, these systems are usually subjected to input magnitude constraints. In this paper, a multi-channel identification algorithm (MCIA) is proposed, in which the coefficient parameters are identified by least squares estimation (LSE) together with a singular value decomposition (SVD) technique. Compared with traditional single-channel identification algorithms, the present method can enhance the approximation accuracy remarkably, and provide consistent estimates even in the presence of coloured output noises under relatively weak assumptions on the persistent excitation (PE) condition of the inputs. Then, to facilitate the following controller design, this MCIA is converted into a two stage single-channel identification algorithm (TS-SCIA), which preserves most of the advantages of MCIA. With this TS-SCIA as the inner model, a dual-mode non-linear model predictive control (NMPC) algorithm is developed. In detail, over a finite horizon, an optimal input profile found by solving a open-loop optimal control problem drives the non-linear system state into the terminal invariant set; afterwards a linear output-feedback controller steers the state to the origin asymptotically. In contrast to the traditional algorithms, the present method has a maximal stable region, a better steady-state performance and a lower computational complexity. Finally, simulation results on a heat exchanger are presented to show the efficiency of both the identification and the control algorithms.  相似文献   

17.
In this paper, the robust adaptive fuzzy tracking control problem is discussed for a class of perturbed strict-feedback nonlinear systems. The fuzzy logic systems in Mamdani type are used to approximate unknown nonlinear functions. A design scheme of the robust adaptive fuzzy controller is proposed by use of the backstepping technique. The proposed controller guarantees semi-global uniform ultimate boundedness of all the signals in the derived closed-loop system and achieves the good tracking performance. The possible controller singularity problem which may occur in some existing adaptive control schemes with feedback linearization techniques can be avoided. In addition, the number of the on-line adaptive parameters is not more than the order of the designed system. Finally, two simulation examples are used to demonstrate the effectiveness of the proposed control scheme.  相似文献   

18.
In this paper, the robust adaptive fuzzy tracking control problem is discussed for a class of perturbed strict-feedback nonlinear systems. The fuzzy logic systems in Mamdani type are used to approximate unknown nonlinear functions. A design scheme of the robust adaptive fuzzy controller is proposed by use of the backstepping technique. The proposed controller guarantees semi-global uniform ultimate boundedness of all the signals in the derived closed-loop system and achieves the good tracking performance. The possible controller singularity problem which may occur in some existing adaptive control schemes with feedback linearization techniques can be avoided. In addition, the number of the on-line adaptive parameters is not more than the order of the designed system. Finally, two simulation examples are used to demonstrate the effectiveness of the proposed control scheme.  相似文献   

19.
基于支持向量机N4SID辨识模型的非线性预测控制   总被引:1,自引:0,他引:1       下载免费PDF全文
针对工业控制领域中非线性系统的模型辨识与预测控制问题,采用最小二乘支持向量机回归方法构造非线性函数,运用状态子空间(N4SID)模型辨识方法辨识非线性状态空间模型.在此基础上建立非线性预测控制器,利用拟牛顿算法进行非线性预测控制律的求解,从而实现了一种新的基于支持向量机N4SID辨识模型的非线性预测控制算法.仿真实验验证了该算法的有效性和可行性.  相似文献   

20.
A plant-wide control strategy based on integrating linear model predictive control (LMPC) and nonlinear model predictive control (NMPC) is proposed. The hybrid method is applicable to plants that can be decomposed into approximately linear subsystems and highly nonlinear subsystems that interact via mass and energy flows. LMPC is applied to the linear subsystems and NMPC is applied to the nonlinear subsystems. A simple controller coordination strategy that counteracts interaction effects is proposed for the case of one linear subsystem and one nonlinear subsystem. A reactor/separator process with recycle is used to compare the hybrid method to conventional LMPC and NMPC techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号