首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The linguistic dynamic systems(LDSs) based on type-1 fuzzy sets can provide a powerful tool for modeling, analysis,evaluation and control of complex systems. However, as pointed out in earlier studies, it is much more reasonable to take type-2fuzzy sets to model the existing uncertainties of linguistic words. In this paper, the LDS based on type-2 fuzzy sets is studied, and its reasoning process is realized through the perceptual reasoning method. The properties of the perceptual reasoning method based LDS(PR-LDS) are explored. These properties demonstrated that the output of PR-LDS is intuitive and the computation complexity can be reduced when the consequent type-2 fuzzy numbers in the rule base satisfy some conditions. Further, a data driven method for the design of the PR-LDS is provided. At last, the effectiveness and rationality of the proposed data-driven method are verified by an example.  相似文献   

2.
有混合数据输入的自适应模糊神经推理系统   总被引:1,自引:0,他引:1  
现有数据建模方法大多依赖于定量的数值信息,而对于数值与分类混合输入的数据建模问题往往根据分类变量组合建立多个子模型,当有多个分类变量输入时易出现子模型数据分布不均匀、训练耗时长等问题.针对上述问题,提出一种具有混合数据输入的自适应模糊神经推理系统模型,在自适应模糊推理系统的基础上,引入激励强度转移矩阵和结论影响矩阵,采用基于高氏距离的减法聚类辨识模型结构,通过混合学习算法训练模型参数,使数值与分类混合数据对模糊规则的前后件参数同时产生作用,共同影响模型输出.仿真实验分析了分类数据对模型规则后件的作用以及结构辨识算法对模糊规则数的影响,与其他几种混合数据建模方法对比表明本文所提出的模型具有较高的预测精度和计算效率.  相似文献   

3.
The prediction of time series has both the theoretical value and practical significance in reality. However, since the high nonlinear and noises in the time series, it is still an open problem to tackle with the uncertainties and fuzziness in the forecasting process. In this article, an evolving recurrent interval type-2 intuitionistic fuzzy neural network (eRIT2IFNN) is proposed for time series prediction and regression problems. The eRIT2IFNN employs interval type-2 intuitionistic fuzzy sets to enhance the modeling of uncertainties by intuitionistic evaluation and noise tolerance of the system. In the eRIT2IFNN, the antecedent part of each fuzzy rule is defined using intuitionistic interval type-2 fuzzy sets, and the consequent realizes the Takagi–Sugeno–Kang type fuzzy inference mechanism. In order to utilize the prior knowledge including intuitionistic information, a local internal feedback is established by feeding the rule firing strength of each rule to itself eRIT2IFNN is fully adaptive to the evolving of sequence data by online learning of structure and parameters. A modified density-based clustering is implemented for the structure learning, where both densities and membership degrees are involved to determine the fuzzy rules. Performance of eRIT2IFNN is evaluated using a set of benchmark problems and compared with existing fuzzy inference systems. Moreover, the eRIT2IFNN is tested for identification of dynamics under both noise-free and noisy environments. Finally, a group of practical financial price-tracking problems including high-frequency data of financial future, commodity future and precious metal are used for the evaluation of the proposed inference system.  相似文献   

4.
This paper proposes a self-evolving interval type-2 fuzzy neural network (SEIT2FNN) with online structure and parameter learning. The antecedent parts in each fuzzy rule of the SEIT2FNN are interval type-2 fuzzy sets and the fuzzy rules are of the Takagi–Sugeno–Kang (TSK) type. The initial rule base in the SEIT2FNN is empty, and the online clustering method is proposed to generate fuzzy rules that flexibly partition the input space. To avoid generating highly overlapping fuzzy sets in each input variable, an efficient fuzzy set reduction method is also proposed. This method independently determines whether a corresponding fuzzy set should be generated in each input variable when a new fuzzy rule is generated. For parameter learning, the consequent part parameters are tuned by the rule-ordered Kalman filter algorithm for high-accuracy learning performance. Detailed learning equations on applying the rule-ordered Kalman filter algorithm to the SEIT2FNN consequent part learning, with rules being generated online, are derived. The antecedent part parameters are learned by gradient descent algorithms. The SEIT2FNN is applied to simulations on nonlinear plant modeling, adaptive noise cancellation, and chaotic signal prediction. Comparisons with other type-1 and type-2 fuzzy systems in these examples verify the performance of the SEIT2FNN.   相似文献   

5.
A systematic neural-fuzzy modeling framework that includes the initial fuzzy model self-generation, significant input selection, partition validation, parameter optimization, and rule-base simplification is proposed in this paper. In this framework, the structure identification and parameter optimization are carried out automatically and efficiently by the combined use of a sell-organization network, fuzzy clustering, adaptive back-propagation learning, and similarity analysis-based model simplification. The proposed neuro-fuzzy modeling approach has been used for nonlinear system identification and mechanical property prediction in hot-rolled steels from construct composition and microstructure data. Experimental studies demonstrate that the predicted mechanical properties have a good agreement with the measured data by using the elicited fuzzy model with a small number of rules.  相似文献   

6.
This study is concerned with the adaptive learning of an interpretable Sugeno-type fuzzy inference system, in a deterministic framework, in the presence of data uncertainties and modeling errors. The authors explore the use of H/sup /spl infin// estimation theory and least squares estimation for online learning of membership functions and consequent parameters without making any assumption and requiring a priori knowledge of upper bounds, statistics, and distribution of data uncertainties and modeling errors. The issues of data uncertainties, modeling errors, and time variations have been considered mathematically in a sensible way. The proposed robust approach to the adaptive learning of fuzzy models has been illustrated through the examples of adaptive system identification, time-series prediction, and estimation of an uncertain process.  相似文献   

7.
A neural fuzzy system with fuzzy supervised learning   总被引:2,自引:0,他引:2  
A neural fuzzy system learning with fuzzy training data (fuzzy if-then rules) is proposed in this paper. This system is able to process and learn numerical information as well as linguistic information. At first, we propose a five-layered neural network for the connectionist realization of a fuzzy inference system. The connectionist structure can house fuzzy logic rules and membership functions for fuzzy inference. We use alpha-level sets of fuzzy numbers to represent linguistic information. The inputs, outputs, and weights of the proposed network can be fuzzy numbers of any shape. Furthermore, they can be hybrid of fuzzy numbers and numerical numbers through the use of fuzzy singletons. Based on interval arithmetics, a fuzzy supervised learning algorithm is developed for the proposed system. It extends the normal supervised learning techniques to the learning problems where only linguistic teaching signals are available. The fuzzy supervised learning scheme can train the proposed system with desired fuzzy input-output pairs which are fuzzy numbers instead of the normal numerical values. With fuzzy supervised learning, the proposed system can be used for rule base concentration to reduce the number of rules in a fuzzy rule base. Simulation results are presented to illustrate the performance and applicability of the proposed system.  相似文献   

8.
经典数据驱动型TSK模糊系统在利用高维数据训练模型时,由于规则前件采用的特征过多,导致规则的解释性和简洁性下降.对此,根据模糊子空间聚类算法的子空间特性,为TSK模型添加特征抽取机制,并进一步利用岭回归实现后件的学习,提出一种基于模糊子空间聚类的0阶岭回归TSK模型构建方法.该方法不仅能为规则抽取出重要子空间特征,而且可为不同规则抽取不同的特征.在模拟和真实数据集上的实验结果验证了所提出方法的优势.  相似文献   

9.
In many real-world problems involving pattern recognition, system identification and modeling, control, decision making, and forecasting of time-series, available data are quite often of uncertain nature. An interesting alternative is to employ type-2 fuzzy sets, which augment fuzzy models with expressive power to develop models, which efficiently capture the factor of uncertainty. The three-dimensional membership functions of type-2 fuzzy sets offer additional degrees of freedom that make it possible to directly and more effectively account for model’s uncertainties. Type-2 fuzzy logic systems developed with the aid of evolutionary optimization forms a useful modeling tool subsequently resulting in a collection of efficient “If-Then” rules.The type-2 fuzzy neural networks take advantage of capabilities of fuzzy clustering by generating type-2 fuzzy rule base, resulting in a small number of rules and then optimizing membership functions of type-2 fuzzy sets present in the antecedent and consequent parts of the rules. The clustering itself is realized with the aid of differential evolution.Several examples, including a benchmark problem of identification of nonlinear system, are considered. The reported comparative analysis of experimental results is used to quantify the performance of the developed networks.  相似文献   

10.
We present an application of type-2 neuro-fuzzy modeling to stock price prediction based on a given set of training data. Type-2 fuzzy rules can be generated automatically by a self-constructing clustering method and the obtained type-2 fuzzy rules cab be refined by a hybrid learning algorithm. The given training data set is partitioned into clusters through input-similarity and output-similarity tests, and a type-2 TSK rule is derived from each cluster to form a fuzzy rule base. Then the antecedent and consequent parameters associated with the rules are refined by particle swarm optimization and least squares estimation. Experimental results, obtained by running on several datasets taken from TAIEX and NASDAQ, demonstrate the effectiveness of the type-2 neuro-fuzzy modeling approach in stock price prediction.  相似文献   

11.
This paper proposes a self-splitting fuzzy classifier with support vector learning in expanded high-order consequent space (SFC-SVHC) for classification accuracy improvement. The SFC-SVHC expands the rule-mapped consequent space of a first-order Takagi-Sugeno (TS)-type fuzzy system by including high-order terms to enhance the rule discrimination capability. A novel structure and parameter learning approach is proposed to construct the SFC-SVHC. For structure learning, a variance-based self-splitting clustering (VSSC) algorithm is used to determine distributions of the fuzzy sets in the input space. There are no rules in the SFC-SVHC initially. The VSSC algorithm generates a new cluster by splitting an existing cluster into two according to a predefined cluster-variance criterion. The SFC-SVHC uses trigonometric functions to expand the rule-mapped first-order consequent space to a higher-dimensional space. For parameter optimization in the expanded rule-mapped consequent space, a support vector machine is employed to endow the SFC-SVHC with high generalization ability. Experimental results on several classification benchmark problems show that the SFC-SVHC achieves good classification results with a small number of rules. Comparisons with different classifiers demonstrate the superiority of the SFC-SVHC in classification accuracy.  相似文献   

12.
A neural fuzzy system with linguistic teaching signals   总被引:2,自引:0,他引:2  
A neural fuzzy system learning with linguistic teaching signals is proposed. This system is able to process and learn numerical information as well as linguistic information. It can be used either as an adaptive fuzzy expert system or as an adaptive fuzzy controller. First, we propose a five-layered neural network for the connectionist realization of a fuzzy inference system. The connectionist structure can house fuzzy logic rules and membership functions for fuzzy inference. We use α-level sets of fuzzy numbers to represent linguistic information. The inputs, outputs, and weights of the proposed network can be fuzzy numbers of any shape. Furthermore, they can be hybrid of fuzzy numbers and numerical numbers through the use of fuzzy singletons. Based on interval arithmetics, two kinds of learning schemes are developed for the proposed system: fuzzy supervised learning and fuzzy reinforcement learning. Simulation results are presented to illustrate the performance and applicability of the proposed system  相似文献   

13.

Fuzzy rule-based systems (FRBSs) are well-known soft computing methods commonly used to tackle classification problems characterized by uncertainties and imprecisions. We propose a hybrid intelligent fruit fly optimization algorithm (FOA) to generate and classify fuzzy rules and select the best rules in a fuzzy if–then rule system. We combine a FOA and a heuristic algorithm in a hybrid intelligent algorithm. The FOA is used to create, evaluate and update triangular fuzzy rule-based and orthogonal fuzzy rule-based systems. The heuristic algorithm is used to calculate the certainty grade of the rules. The parameters in the proposed hybrid algorithm are tuned using the Taguchi method. An experiment with 27 benchmark datasets and a tenfold cross-validation strategy is designed and carried out to compare the proposed hybrid algorithm with nine different FRBSs. The results show that the hybrid algorithm proposed in this study is significantly more accurate than the nine competing FRBSs.

  相似文献   

14.
Time series forecasting is an important and widely interesting topic in the research of system modeling. We propose a new computational intelligence approach to the problem of time series forecasting, using a neuro-fuzzy system (NFS) with auto-regressive integrated moving average (ARIMA) models and a novel hybrid learning method. The proposed intelligent system is denoted as the NFS–ARIMA model, which is used as an adaptive nonlinear predictor to the forecasting problem. For the NFS–ARIMA, the focus is on the design of fuzzy If-Then rules, where ARIMA models are embedded in the consequent parts of If-Then rules. For the hybrid learning method, the well-known particle swarm optimization (PSO) algorithm and the recursive least-squares estimator (RLSE) are combined together in a hybrid way so that they can update the free parameters of NFS–ARIMA efficiently. The PSO is used to update the If-part parameters of the proposed predictor, and the RLSE is used to adapt the Then-part parameters. With the hybrid PSO–RLSE learning method, the NFS–ARIMA predictor may converge in fast learning pace with admirable performance. Three examples are used to test the proposed approach for forecasting ability. The results by the proposed approach are compared to other approaches. The performance comparison shows that the proposed approach performs appreciably better than the compared approaches. Through the experimental results, the proposed approach has shown excellent prediction performance.  相似文献   

15.
谢永芳  胡志坤  桂卫华 《控制工程》2006,13(5):442-444,448
针对数值型数据能准确反应现实世界,但难以理解的问题,为了从数值型数据中挖掘出易于理解的知识,提出了基于数值型数据的模糊规则快速挖掘方法。该方法能从数值型数据中挖掘出一个零阶的Sugeno模糊规则,并采用一种启发式方法将这个零阶的Sugeno模糊规则的数值结论转变为两个带置信度的语言变量,并给出了规则库的存储结构。最后通过实例证明了这种快速模糊规则挖掘方法能避免复杂的数值型计算和能有效逼近非线性函数的优点.  相似文献   

16.
Song  Miao  Shen  Miao  Bu-Sung   《Neurocomputing》2009,72(13-15):3098
Fuzzy rule derivation is often difficult and time-consuming, and requires expert knowledge. This creates a common bottleneck in fuzzy system design. In order to solve this problem, many fuzzy systems that automatically generate fuzzy rules from numerical data have been proposed. In this paper, we propose a fuzzy neural network based on mutual subsethood (MSBFNN) and its fuzzy rule identification algorithms. In our approach, fuzzy rules are described by different fuzzy sets. For each fuzzy set representing a fuzzy rule, the universe of discourse is defined as the summation of weighted membership grades of input linguistic terms that associate with the given fuzzy rule. In this manner, MSBFNN fully considers the contribution of input variables to the joint firing strength of fuzzy rules. Afterwards, the proposed fuzzy neural network quantifies the impacts of fuzzy rules on the consequent parts by fuzzy connections based on mutual subsethood. Furthermore, to enhance the knowledge representation and interpretation of the rules, a linear transformation from consequent parts to output is incorporated into MSBFNN so that higher accuracy can be achieved. In the parameter identification phase, the backpropagation algorithm is employed, and proper linear transformation is also determined dynamically. To demonstrate the capability of the MSBFNN, simulations in different areas including classification, regression and time series prediction are conducted. The proposed MSBFNN shows encouraging performance when benchmarked against other models.  相似文献   

17.
In this paper, we introduce a novel approach to time-series prediction realized both at the linguistic and numerical level. It exploits fuzzy cognitive maps (FCMs) along with a recently proposed learning method that takes advantage of real-coded genetic algorithms. FCMs are used for modeling and qualitative analysis of dynamic systems. Within the framework of FCMs, the systems are described by means of concepts and their mutual relationships. The proposed prediction method combines FCMs with granular, fuzzy-set-based model of inputs. One of their main advantages is an ability to carry out modeling and prediction at both numerical and linguistic levels. A comprehensive set of experiments has been carried out with two major goals in mind. One is to assess quality of the proposed architecture, the other to examine the influence of its parameters of the prediction technique on the quality of prediction. The obtained results, which are compared with other prediction techniques using fuzzy sets, demonstrate that the proposed architecture offers substantial accuracy expressed at both linguistic and numerical levels.  相似文献   

18.
The task of fuzzy modelling involves specification of rule antecedents and determination of their consequent counterparts. Rule premises appear here a critical issue since they determine the structure of a rule base. This paper proposes a new approach to extracting fuzzy rules from training examples by means of genetic-based premise learning. In order to construct a 'parsimonious' fuzzy model with high generalization ability, general premise structure allowing incomplete compositions of input variables as well as OR connectives of linguistic terms is considered. A genetic algorithm is utilized to optimize both the premise structure of rules and fuzzy set membership functions at the same time. Determination of rule conclusions is nested in the premise learning, where consequences of individual rules are determined under fixed preconditions. The proposed method was applied to the well-known gas furnace data of Box and Jenkins to show its validity and to compare its performance with those of other works.  相似文献   

19.
Reliability, a measure of software, deals in total number of faults count up to a certain period of time. The present study aims at estimating the total number of software faults during the early phase of software life cycle. Such estimation helps in producing more reliable software as there may be a scope to take necessary corrective actions for improving the reliability within optimum time and cost by the software developers. The proposed interval type-2 fuzzy logic-based model considers reliability-relevant software metric and earlier project data as model inputs. Type-2 fuzzy sets have been used to reduce uncertainties in the vague linguistic values of the software metrics. A rule formation algorithm has been developed to overcome inconsistency in the consequent parts of large number of rules. Twenty-six software project data help to validate the model, and a comparison has been provided to analyse the proposed model’s performance.  相似文献   

20.
To deal with data patterns with linguistic ambiguity and with probabilistic uncertainty in a single framework, we construct an interpretable probabilistic fuzzy rule-based system that requires less human intervention and less prior knowledge than other state of the art methods. Specifically, we present a new iterative fuzzy clustering algorithm that incorporates a supervisory scheme into an unsupervised fuzzy clustering process. The learning process starts in a fully unsupervised manner using fuzzy c-means (FCM) clustering algorithm and a cluster validity criterion, and then gradually constructs meaningful fuzzy partitions over the input space. The corresponding fuzzy rules with probabilities are obtained through an iterative learning process of selecting clusters with supervisory guidance based on the notions of cluster-pureness and class-separability. The proposed algorithm is tested first with synthetic data sets and benchmark data sets from the UCI Repository of Machine Learning Database and then, with real facial expression data and TV viewing data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号