共查询到20条相似文献,搜索用时 15 毫秒
1.
Crowded motions refer to multiple objects moving around and interacting such as crowds, pedestrians and etc. We capture crowded scenes using a depth scanner at video frame rates. Thus, our input is a set of depth frames which sample the scene over time. Processing such data is challenging as it is highly unorganized, with large spatio‐temporal holes due to many occlusions. As no correspondence is given, locally tracking 3D points across frames is hard due to noise and missing regions. Furthermore global segmentation and motion completion in presence of large occlusions is ambiguous and hard to predict. Our algorithm utilizes Gestalt principles of common fate and good continuity to compute motion tracking and completion respectively. Our technique does not assume any pre‐given markers or motion template priors. Our key‐idea is to reduce the motion completion problem to a 1D curve fitting and matching problem which can be solved efficiently using a global optimization scheme. We demonstrate our segmentation and completion method on a variety of synthetic and real world crowded scanned scenes. 相似文献
2.
We propose a new boundary handling method for smoothed particle hydrodynamics (SPH). Previous approaches required the use of boundary particles to prevent particles from sticking to the boundary. We address this issue by correcting the fundamental equations of SPH with the integration of a kernel function. Our approach is able to directly handle triangle mesh boundaries without the need for boundary particles. We also show how our approach can be integrated into a position‐based fluid framework. 相似文献
3.
In this paper we present a novel approach to simulate image formation for a wide range of real world lenses in the Monte Carlo ray tracing framework. Our approach sidesteps the overhead of tracing rays through a system of lenses and requires no tabulation. To this end we first improve the precision of polynomial optics to closely match ground‐truth ray tracing. Second, we show how the Jacobian of the optical system enables efficient importance sampling, which is crucial for difficult paths such as sampling the aperture which is hidden behind lenses on both sides. Our results show that this yields converged images significantly faster than previous methods and accurately renders complex lens systems with negligible overhead compared to simple models, e.g. the thin lens model. We demonstrate the practicality of our method by incorporating it into a bidirectional path tracing framework and show how it can provide information needed for sophisticated light transport algorithms. 相似文献
4.
4D Video Textures (4DVT) introduce a novel representation for rendering video‐realistic interactive character animation from a database of 4D actor performance captured in a multiple camera studio. 4D performance capture reconstructs dynamic shape and appearance over time but is limited to free‐viewpoint video replay of the same motion. Interactive animation from 4D performance capture has so far been limited to surface shape only. 4DVT is the final piece in the puzzle enabling video‐realistic interactive animation through two contributions: a layered view‐dependent texture map representation which supports efficient storage, transmission and rendering from multiple view video capture; and a rendering approach that combines multiple 4DVT sequences in a parametric motion space, maintaining video quality rendering of dynamic surface appearance whilst allowing high‐level interactive control of character motion and viewpoint. 4DVT is demonstrated for multiple characters and evaluated both quantitatively and through a user‐study which confirms that the visual quality of captured video is maintained. The 4DVT representation achieves >90% reduction in size and halves the rendering cost. 相似文献
5.
We address the problem of making human motion capture in the wild more practical by using a small set of inertial sensors attached to the body. Since the problem is heavily under‐constrained, previous methods either use a large number of sensors, which is intrusive, or they require additional video input. We take a different approach and constrain the problem by: (i) making use of a realistic statistical body model that includes anthropometric constraints and (ii) using a joint optimization framework to fit the model to orientation and acceleration measurements over multiple frames. The resulting tracker Sparse Inertial Poser (SIP) enables motion capture using only 6 sensors (attached to the wrists, lower legs, back and head) and works for arbitrary human motions. Experiments on the recently released TNT15 dataset show that, using the same number of sensors, SIP achieves higher accuracy than the dataset baseline without using any video data. We further demonstrate the effectiveness of SIP on newly recorded challenging motions in outdoor scenarios such as climbing or jumping over a wall. 相似文献
6.
A. C. Bauer H. Abbasi J. Ahrens H. Childs B. Geveci S. Klasky K. Moreland P. O'Leary V. Vishwanath B. Whitlock E. W. Bethel 《Computer Graphics Forum》2016,35(3):577-597
The considerable interest in the high performance computing (HPC) community regarding analyzing and visualization data without first writing to disk, i. e., in situ processing, is due to several factors. First is an I/O cost savings, where data is analyzed/visualized while being generated, without first storing to a filesystem. Second is the potential for increased accuracy, where fine temporal sampling of transient analysis might expose some complex behavior missed in coarse temporal sampling. Third is the ability to use all available resources, CPU's and accelerators, in the computation of analysis products. This STAR paper brings together researchers, developers and practitioners using in situ methods in extreme‐scale HPC with the goal to present existing methods, infrastructures, and a range of computational science and engineering applications using in situ analysis and visualization. 相似文献
7.
In this report, we review the current state of the art of web‐based visualization applications. Recently, an increasing number of web‐based visualization applications have emerged. This is due to the fact that new technologies offered by modern browsers greatly increased the capabilities for visualizations on the web. We first review these technical aspects that are enabling this development. This includes not only improvements for local rendering like WebGL and HTML5, but also infrastructures like grid or cloud computing platforms. Another important factor is the transfer of data between the server and the client. Therefore, we also discuss advances in this field, for example methods to reduce bandwidth requirements like compression and other optimizations such as progressive rendering and streaming. After establishing these technical foundations, we review existing web‐based visualization applications and prototypes from various application domains. Furthermore, we propose a classification of these web‐based applications based on the technologies and algorithms they employ. Finally, we also discuss promising application areas that would benefit from web‐based visualization and assess their feasibility based on the existing approaches. 相似文献
8.
3D garment capture is an important component for various applications such as free‐view point video, virtual avatars, online shopping, and virtual cloth fitting. Due to the complexity of the deformations, capturing 3D garment shapes requires controlled and specialized setups. A viable alternative is image‐based garment capture. Capturing 3D garment shapes from a single image, however, is a challenging problem and the current solutions come with assumptions on the lighting, camera calibration, complexity of human or mannequin poses considered, and more importantly a stable physical state for the garment and the underlying human body. In addition, most of the works require manual interaction and exhibit high run‐times. We propose a new technique that overcomes these limitations, making garment shape estimation from an image a practical approach for dynamic garment capture. Starting from synthetic garment shape data generated through physically based simulations from various human bodies in complex poses obtained through Mocap sequences, and rendered under varying camera positions and lighting conditions, our novel method learns a mapping from rendered garment images to the underlying 3D garment model. This is achieved by training Convolutional Neural Networks (CNN‐s) to estimate 3D vertex displacements from a template mesh with a specialized loss function. We illustrate that this technique is able to recover the global shape of dynamic 3D garments from a single image under varying factors such as challenging human poses, self occlusions, various camera poses and lighting conditions, at interactive rates. Improvement is shown if more than one view is integrated. Additionally, we show applications of our method to videos. 相似文献
9.
We present a new technique called Multiple Vertex Next Event Estimation, which outperforms current direct lighting techniques in forward scattering, optically dense media with the Henyey‐Greenstein phase function. Instead of a one‐segment connection from a vertex within the medium to the light source, an entire sub path of arbitrary length can be created and we show experimentally that 4–10 segments work best in practice. This is done by perturbing a seed path within the Monte Carlo context. Our technique was integrated in a Monte Carlo renderer, combining random walk path tracing with multiple vertex next event estimation via multiple importance sampling for an unbiased result. We evaluate this new technique against standard next event estimation and show that it significantly reduces noise and increases performance of multiple scattering renderings in highly anisotropic, optically dense media. Additionally, we discuss multiple light sources and performance implications of memory‐heavy heterogeneous media. 相似文献
10.
Manuel N. Gamito 《Computer Graphics Forum》2016,35(4):25-36
A new unbiased sampling approach is presented, which allows the direct illumination from disk and cylinder light sources to be sampled with a uniform probability distribution within their solid angles, as seen from each illuminated point. This approach applies to any form of global illumination path tracing algorithm (forward or bidirectional), where the direct illumination integral from light sources needs to be estimated. We show that taking samples based on the solid angle of these two light sources leads to improved estimates and reduced variance of the Monte Carlo integral for direct illumination. This work follows from previously known unbiased methods for the solid angle sampling of triangular and rectangular light sources and extends the class of lights that can be rendered with these improved sampling algorithms. 相似文献
11.
In this paper, we present a method to model hyperelasticity that is well suited for representing the nonlinearity of real‐world objects, as well as for estimating it from deformation examples. Previous approaches suffer several limitations, such as lack of integrability of elastic forces, failure to enforce energy convexity, lack of robustness of parameter estimation, or difficulty to model cross‐modal effects. Our method avoids these problems by relying on a general energy‐based definition of elastic properties. The accuracy of the resulting elastic model is maximized by defining an additive model of separable energy terms, which allow progressive parameter estimation. In addition, our method supports efficient modeling of extreme nonlinearities thanks to energy‐limiting constraints. We combine our energy‐based model with an optimization method to estimate model parameters from force‐deformation examples, and we show successful modeling of diverse deformable objects, including cloth, human finger skin, and internal human anatomy in a medical imaging application. 相似文献
12.
Quentin Avril Donya Ghafourzadeh Srinivasan Ramachandran Sahel Fallahdoust Sarah Ribet Olivier Dionne Martin de Lasa Eric Paquette 《Computer Graphics Forum》2016,35(2):115-126
We present a general method for transferring skeletons and skinning weights between characters with distinct mesh topologies. Our pipeline takes as inputs a source character rig (consisting of a mesh, a transformation hierarchy of joints, and skinning weights) and a target character mesh. From these inputs, we compute joint locations and orientations that embed the source skeleton in the target mesh, as well as skinning weights to bind the target geometry to the new skeleton. Our method consists of two key steps. We first compute the geometric correspondence between source and target meshes using a semi‐automatic method relying on a set of markers. The resulting geometric correspondence is then used to formulate attribute transfer as an energy minimization and filtering problem. We demonstrate our approach on a variety of source and target bipedal characters, varying in mesh topology and morphology. Several examples demonstrate that the target characters behave well when animated with either forward or inverse kinematics. Via these examples, we show that our method preserves subtle artistic variations; spatial relationships between geometry and joints, as well as skinning weight details, are accurately maintained. Our proposed pipeline opens up many exciting possibilities to quickly animate novel characters by reusing existing production assets. 相似文献
13.
Pablo Bauszat Martin Eisemann Elmar Eisemann Marcus Magnor 《Computer Graphics Forum》2015,34(2):597-608
Adaptive filtering techniques have proven successful in handling non‐uniform noise in Monte‐Carlo rendering approaches. A recent trend is to choose an optimal filter per pixel from a selection of non spatially‐varying filters. Nonetheless, the best filter choice is difficult to predict in the absence of a reference rendering. Our approach relies on the observation that the reconstruction error is locally smooth for a given filter. Hence, we propose to construct a dense error prediction from a small set of sparse but robust estimates. The filter selection is then formulated as a non‐local optimization problem, which we solve via graph cuts, to avoid visual artifacts due to inconsistent filter choices. Our approach does not impose any restrictions on the used filters, outperforms previous state‐of‐the‐art techniques and provides an extensible framework for future reconstruction techniques. 相似文献
14.
C. Karen Liu 《Computer Graphics Forum》2016,35(2):523-532
15.
Ł. Dąbała P. Kellnhofer T. Ritschel P. Didyk K. Templin K. Myszkowski P. Rokita H.‐P. Seidel 《Computer Graphics Forum》2014,33(2):53-62
Presenting stereoscopic content on 3D displays is a challenging task, usually requiring manual adjustments. A number of techniques have been developed to aid this process, but they account for binocular disparity of surfaces that are diffuse and opaque only. However, combinations of transparent as well as specular materials are common in the real and virtual worlds, and pose a significant problem. For example, excessive disparities can be created which cannot be fused by the observer. Also, multiple stereo interpretations become possible, e. g., for glass, that both reflects and refracts, which may confuse the observer and result in poor 3D experience. In this work, we propose an efficient method for analyzing and controlling disparities in computer‐generated images of such scenes where surface positions and a layer decomposition are available. Instead of assuming a single per‐pixel disparity value, we estimate all possibly perceived disparities at each image location. Based on this representation, we define an optimization to find the best per‐pixel camera parameters, assuring that all disparities can be easily fused by a human. A preliminary perceptual study indicates, that our approach combines comfortable viewing with realistic depiction of typical specular scenes. 相似文献
16.
Matt Jen‐Yuan Chiang Benedikt Bitterli Chuck Tappan Brent Burley 《Computer Graphics Forum》2016,35(2):275-283
We present an energy‐conserving fiber shading model for hair and fur that is efficient enough for path tracing. Our model adopts a near‐field formulation to avoid the expensive integral across the fiber, accounts for all high order internal reflection events with a single lobe, and proposes a novel, closed‐form distribution for azimuthal roughness based on the logistic distribution. Additionally, we derive, through simulation, a parameterization that relates intuitive user controls such as multiple‐scattering albedo and isotropic cylinder roughness to the underlying physical parameters. 相似文献
17.
Naoya Iwamoto Hubert P. H. Shum Longzhi Yang Shigeo Morishima 《Computer Graphics Forum》2015,34(7):99-109
Due to the recent advancement of computer graphics hardware and software algorithms, deformable characters have become more and more popular in real‐time applications such as computer games. While there are mature techniques to generate primary deformation from skeletal movement, simulating realistic and stable secondary deformation such as jiggling of fats remains challenging. On one hand, traditional volumetric approaches such as the finite element method require higher computational cost and are infeasible for limited hardware such as game consoles. On the other hand, while shape matching based simulations can produce plausible deformation in real‐time, they suffer from a stiffness problem in which particles either show unrealistic deformation due to high gains, or cannot catch up with the body movement. In this paper, we propose a unified multi‐layer lattice model to simulate the primary and secondary deformation of skeleton‐driven characters. The core idea is to voxelize the input character mesh into multiple anatomical layers including the bone, muscle, fat and skin. Primary deformation is applied on the bone voxels with lattice‐based skinning. The movement of these voxels is propagated to other voxel layers using lattice shape matching simulation, creating a natural secondary deformation. Our multi‐layer lattice framework can produce simulation quality comparable to those from other volumetric approaches with a significantly smaller computational cost. It is best to be applied in real‐time applications such as console games or interactive animation creation. 相似文献
18.
Panayiotis Charalambous Ioannis Karamouzas Stephen J. Guy Yiorgos Chrysanthou 《Computer Graphics Forum》2014,33(7):41-50
We present a novel approach for analyzing the quality of multi‐agent crowd simulation algorithms. Our approach is data‐driven, taking as input a set of user‐defined metrics and reference training data, either synthetic or from video footage of real crowds. Given a simulation, we formulate the crowd analysis problem as an anomaly detection problem and exploit state‐of‐the‐art outlier detection algorithms to address it. To that end, we introduce a new framework for the visual analysis of crowd simulations. Our framework allows us to capture potentially erroneous behaviors on a per‐agent basis either by automatically detecting outliers based on individual evaluation metrics or by accounting for multiple evaluation criteria in a principled fashion using Principle Component Analysis and the notion of Pareto Optimality. We discuss optimizations necessary to allow real‐time performance on large datasets and demonstrate the applicability of our framework through the analysis of simulations created by several widely‐used methods, including a simulation from a commercial game. 相似文献
19.
Robust statistical methods are employed to reduce the noise in Monte Carlo ray tracing. Through the use of resampling, the sample mean distribution is determined for each pixel. Because this distribution is uni‐modal and normal for a large sample size, robust estimates converge to the true mean of the pixel values. Compared to existing methods, less additional storage is required at each pixel because the sample mean distribution can be distilled down to a compact size, and fewer computations are necessary because the robust estimation process is sampling independent and needs a small input size to compute pixel values. The robust statistical pixel estimators are not only resistant to impulse noise, but they also remove general noise from fat‐tailed distributions. A substantial speedup in rendering can therefore be achieved by reducing the number of samples required for a desired image quality. The effectiveness of the proposed approach is demonstrated for path tracing simulations. 相似文献
20.
Bidirectional path tracing is known to perform poorly for the rendering of highly occluded scenes. Indeed, the connection strategy between light and eye subpaths does not take into account the visibility factor, presenting no contribution for many sampled paths. To improve the efficiency of bidirectional path tracing, we propose a new method for adaptive resampling of connections between light and eye subpaths. Aiming for this objective, we build discrete probability distributions of light subpaths based on a skeleton of the empty space of the scene. In order to demonstrate the efficiency of our algorithm, we compare our method to both standard bidirectional path tracing and a recent important caching method. 相似文献