首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 70 毫秒
1.
In this paper we present a method for automatic interpolation between adjacent discrete levels of detail to achieve smooth LOD changes in image space. We achieve this by breaking the problem into two passes: We render the two LOD levels individually and combine them in a separate pass afterwards. The interpolation is formulated in a way that only one level has to be updated per frame and the other can be reused from the previous frame, thereby causing roughly the same render cost as with simple non interpolated discrete LOD rendering, only incurring the slight overhead of the final combination pass. Additionally we describe customized interpolation schemes using visibility textures. The method was designed with the ease of integration into existing engines in mind. It requires neither sorting nor blending of objects, nor does it introduce any constrains in the LOD used. The LODs can be coplanar, alpha masked, animated, impostors, and intersecting, while still interpolating smoothly.  相似文献   

2.
Recurrent neural networks are prime candidates for learning evolutions in multi‐dimensional time series data. The performance of such a network is judged by the loss function, which is aggregated into a scalar value that decreases during training. Observing only this number hides the variation that occurs within the typically large training and testing data sets. Understanding these variations is of highest importance to adjust network hyper‐parameters, such as the number of neurons, number of layers or to adjust the training set to include more representative examples. In this paper, we design a comprehensive and interactive system that allows users to study the output of recurrent neural networks on both the complete training data and testing data. We follow a coarse‐to‐fine strategy, providing overviews of annual, monthly and daily patterns in the time series and directly support a comparison of different hyper‐parameter settings. We applied our method to a recurrent convolutional neural network that was trained and tested on 25 years of climate data to forecast meteorological attributes, such as temperature, pressure and wind velocity. We further visualize the quality of the forecasting models, when applied to various locations on the Earth and we examine the combination of several forecasting models.  相似文献   

3.
This paper presents a simple algorithm for producing stylistic abstraction of a photograph. Based on mean curvature flow in conjunction with shock filter, our method simplifies both shapes and colors simultaneously while preserving important features. In particular, we develop a constrained mean curvature flow, which outperforms the original mean curvature flow in conveying the directionality of features and shape boundaries. The proposed algorithm is iterative and incremental, and therefore the level of abstraction is intuitively controlled. Optionally, simple user masking can be incorporated into the algorithm to selectively control the abstraction speed and to protect particular regions. Experimental results show that our method effectively produces highly abstract yet feature‐preserving illustrations from photographs.  相似文献   

4.
This paper introduces a framebuffer level of detail algorithm for controlling the pixel workload in an interactive rendering application. Our basic strategy is to evaluate the shading in a low resolution buffer and, in a second rendering pass, resample this buffer at the desired screen resolution. The size of the lower resolution buffer provides a trade‐off between rendering time and the level of detail in the final shading. In order to reduce approximation error we use a feature‐preserving reconstruction technique that more faithfully approximates the shading near depth and normal discontinuities. We also demonstrate how intermediate components of the shading can be selectively resized to provide finer‐grained control over resource allocation. Finally, we introduce a simple control mechanism that continuously adjusts the amount of resizing necessary to maintain a target framerate. These techniques do not require any preprocessing, are straightforward to implement on modern GPUs, and are shown to provide significant performance gains for several pixel‐bound scenes.  相似文献   

5.
High‐refresh‐rate displays (e. g., 120 Hz) have recently become available on the consumer market and quickly gain on popularity. One of their aims is to reduce the perceived blur created by moving objects that are tracked by the human eye. However, an improvement is only achieved if the video stream is produced at the same high refresh rate (i. e. 120 Hz). Some devices, such as LCD TVs, solve this problem by converting low‐refresh‐rate content (i. e. 50 Hz PAL) into a higher temporal resolution (i. e. 200 Hz) based on two‐dimensional optical flow. In our approach, we will show how rendered three‐dimensional images produced by recent graphics hardware can be up‐sampled more efficiently resulting in higher quality at the same time. Our algorithm relies on several perceptual findings and preserves the naturalness of the original sequence. A psychophysical study validates our approach and illustrates that temporally up‐sampled video streams are preferred over the standard low‐rate input by the majority of users. We show that our solution improves task performance on high‐refresh‐rate displays.  相似文献   

6.
We present a real‐time method for rendering a depth‐of‐field effect based on the per‐pixel layered splatting where source pixels are scattered on one of the three layers of a destination pixel. In addition, the missing information behind foreground objects is filled with an additional image of the areas occluded by nearer objects. The method creates high‐quality depth‐of‐field results even in the presence of partial occlusion, without major artifacts often present in the previous real‐time methods. The method can also be applied to simulating defocused highlights. The entire framework is accelerated by GPU, enabling real‐time post‐processing for both off‐line and interactive applications.  相似文献   

7.
This paper introduces a method for automatically generating continuous line illustrations, drawings consisting of a single line, from a given input image. Our approach begins by inferring a graph from a set of edges extracted from the image in question and obtaining a path that traverses through all edges of the said graph. The resulting path is then subjected to a series of post‐processing operations to transform it into a continuous line drawing. Moreover, our approach allows us to manipulate the amount of detail portrayed in our line illustrations, which is particularly useful for simplifying the overall illustration while still retaining its most significant features. We also present several experimental results to demonstrate that our approach can automatically synthesize continuous line illustrations comparable to those of some contemporary artists.  相似文献   

8.
9.
We propose a novel vortex core line extraction method based on the λ2 vortex region criterion in order to improve the detection of vortex features for 3D flow visualization. The core line is defined as a curve that connects λ2 minima restricted to planes that are perpendicular to the core line. The basic algorithm consists of the following stages: (1) λ2 field construction and isosurface extraction; (2) computation of the curve skeleton of the λ2 isosurface to build an initial prediction for the core line; (3) correction of the locations of the prediction by searching for λ2 minima on planes perpendicular to the core line. In particular, we consider the topology of the vortex core lines, guaranteeing the same topology as the initial curve skeleton. Furthermore, we propose a geometry‐guided definition of vortex bifurcation, which represents the split of one core line into two parts. Finally, we introduce a user‐guided approach in order to narrow down vortical regions taking into account the graph of λ2 along the computed vortex core line. We demonstrate the effectiveness of our method by comparing our results to previous core line detection methods with both simulated and experimental data; in particular, we show robustness of our method for noise‐affected data.  相似文献   

10.
Prostate cancer is one of the most prevalent cancers among males, and the use of magnetic resonance imaging (MRI) has been suggested for its detection. A framework is presented for scoring and visualizing various MR data in an efficient and intuitive manner. A classification method is introduced where a cumulative score volume is created which takes into account each of three acquisition types. This score volume is integrated into a volume rendering framework which allows the user to view the prostate gland, the multi‐modal score values, and the surrounding anatomy. A visibility persistence mode is introduced to automatically avoid full occlusion of a selected score and indicate overlaps. The use of GPU‐accelerated multi‐modal single‐pass ray casting provides an interactive experience. User driven importance rendering allows the user to gain insight into the data and can assist in localization of the disease and treatment planning. We evaluate our results against pathology and radiologists'determinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号