首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
超宽带UWB(Ultde Wide Band)定位是近几年发展起来的无线定位技术,UWB信号具有抗多径效应好、定位精度和刷新率高等优点,但UWB一般只能用于进行室内高精度定位。而差分GPS(DGPS)的室外定位精度能达到分米级。描述了结合UWB和DGPS(Differential Global Position System)的定位方法,采用融合Savitzky-Golay滤波器与粒子滤波器来解决不同传感器的数据融合,实现室内外的无缝定位切换,应用在需要室内室外联合定位的场合。实验表明,采用融合不同滤波器进行处理后,能有效地提高定位精度。  相似文献   

2.
通过分析当前常用室内定位技术和实施优缺点,引入UWB(Ultra Wide Band,超宽带)定位模块,分析了UWB室内定位系统的原理以及设备上的实现方案,从定位精度和定位动态性能两方面进行关键性技术研究,改进了基于单一方法的定位技术。针对定位精度问题,根据人体下肢运动过程中的对称性特点改进现有的行人航迹推算算法。针对定位动态性能问题,引入惯性导航定位模块,将改进的PDR算法与UWB定位方法进行融合,通过实验测量说明,使用TOA跟踪算法响应速度较快,设计的UWB室内定位系统具有小于5cm的室内定位精度,重复精度小于1cm。  相似文献   

3.
在无线定位系统中,尤其是在室内定位中,非视距(NLOS)误差的存在使定位性能急剧下降。为克服非视距传播带来的定位误差,提出了一种针对NLOS环境下的基于卡尔曼滤波器(KF)的动态跟踪定位算法,将广泛应用于雷达系统和飞机导航系统的成熟的卡尔曼滤波器应用于室内定位中。实验结果表明,该方法可以满足室内环境下无线定位的需求,即使在恶劣的NLOS环境下也能够获得很高的定位精度,是一种可行的无线局域网定位技术。  相似文献   

4.
《微型机与应用》2019,(5):53-57
为了提升室内定位系统在复杂环境中的实用性,提出了带非视距检测的超宽带(UWB)/行人航迹推算(PDR)组合定位方法。该方法过滤了UWB测量由于非视距(NLOS)带来的有害数据,采用残差状态量的卡尔曼滤波将UWB和PDR的有效数据进行融合,避免了由于系统非线性带来的近似误差,提升了组合系统的定位精度和鲁棒性。仿真和实验结果表明,组合定位系统能够消除非视距的影响,始终比单个系统定位精度高,其定位误差90%在1 m以内,为基于室内定位的应用提供了可靠的基础数据。  相似文献   

5.
在超宽带(UWB)室内定位系统中,定位基站极易受到干扰,从而影响定位系统的准确性、稳定性和可靠性,干扰较强时,会造成基站数据异常波动,无法完成准确定位。为解决UWB室内定位系统基站异常情况的定位问题,本文提出了一种基于粒子群优化的极限学习机(PSO-ELM)定位模型,实现在定位基站发生异常情况下的高精度定位。该定位模型利用双边测 距(TW-TOF)采集标签和基站的距离,运用极限学习机(ELM)建立室内定位解算模型?引入粒子群算法(PSO)优化极限学习机的隐含层权值和阈值参数,以克服ELM算法存在的缺点。实验结果表明:在基站正常情况下,PSO-ELM定位模型平均定位精度可达0.03m。相比于传统TOA定位算法,精度了提高73%,同时在基站异常情况下,平均定位精度可达0.04m,有效解决了当定位系统基站发生异常情况时无法完成正常定位的问题  相似文献   

6.
高度定位是小型飞行器飞行安全的重要指标之一,为了进一步修正小型飞行器高度定位误差,提高定位精度,减少系统硬件成本,文中给出了利用联邦滤波器进行高度定位数据融合的误差修正方法,解决了由于差分GPS(DGPS)受干扰或长时间静默影响定位精度的问题;仿真和数据回放结果表明:采用卡尔曼滤波进行融合可提高定位精度,采用联邦滤波器效果更好,使用文中方法可以得到飞行器更准确的高度定位,可推广使用于多种类型的飞行器定位系统中。  相似文献   

7.
随着室内定位需求的不断提高,室内定位精度的提高成为目前研究的热点,单一传感器定位技术在复杂的室内环境中定位误差较大、精度较低。针对上述问题提出了一种基于UWB和IMU融合的室内定位方法。该方法首先利用卡尔曼滤波算法对UWB定位技术的伪距信息进行非视距误差的处理,利用最小二乘法解算出位置信息,进而与IMU定位系统解算出来的位置进行松耦合,将UWB定位信息作为量测方程,IMU定位信息作为系统方程最终得到松耦合之后的定位结果。通过仿真实验表明,上述方法可以有效地抑制UWB非视距误差和IMU累积误差对定位精度的影响,提高室内定位的精度。  相似文献   

8.
基于目前GPS、北斗定位系统因建筑物阻隔等因素而在室内定位效果不佳的情况,以超宽带(UWB)、WiFi、蓝牙等为基础的室内定位技术得到了广泛应用和快速发展,其中的UWB技术因其传输速率高、功耗小、抗干扰能力强和精度高等特点更是占据着重要的地位。从室内定位技术、UWB定位方法和UWB硬件设施3个角度对室内定位技术进行了分析和总结,针对构建室内定位系统,特别是以UWB技术为代表的高精度室内定位技术方法进行综合论述,并探讨了未来高精度UWB室内定位技术的发展方向。  相似文献   

9.
针对目前国内室内定位领域的需求,提出一种基于UWB的室内定位系统实现方案,充分利用UWB带宽大、定位精度高的优点,实现室内三维定位和追踪。系统通过TOA方法,测量UWB标签与多个UWB基站之间的距离,位置解析服务器通过串口读取测距信息。采用基于四UWB基站的三维空间定位算法,计算定位目标在室内三维空间的位置,并通过WiFi发送位置至用户手机端。手机端通过OpenGL ES加载三维室内地图,并动态接收从服务器端发送的定位目标位置,从而实现室内三维定位与追踪。系统测试表明,基于上述方案的室内定位系统具有较高的精度和实用性。  相似文献   

10.
为了实现室内环境下的高精度定位,根据IEEE802.15.3a标准工作组提出的UWB室内信道模型,设计了一种基于卡尔曼滤波器的TDOA/AOA定位系统.在这个定位系统中,使用NLOS鉴别模块实时地检测信道的NLOS参数,再根据鉴别结果自适应地选用无偏/有偏卡尔曼滤波器,以消除TOA中的NLOS误差,同时对NLOS情况下的AOA数据加以抛弃,最后使用扩展卡尔曼滤波器实现TDOA/AOA混合定位.仿真结果显示,本系统能够实现超宽带室内环境下的高精度定位.  相似文献   

11.
申炳琦  张志明  舒少龙 《计算机应用》2022,42(12):3924-3930
对于移动机器人在室内环境的定位任务,新兴的基于视觉惯性里程计(VIO)的辅助定位技术受光线条件限制大,无法在黑暗环境中工作,且超宽带(UWB)定位易受非视距(NLOS)误差影响。针对以上问题,提出一种UWB与VIO组合的室内移动机器人定位算法。首先,采用立体视觉多状态约束下的Kalman滤波器(S-MSCKF)算法/双边双向测距(DS-TWR)算法和三边定位法,分别得到VIO输出的位置信息/UWB解算的定位信息;然后,建立位置测量系统的运动方程与观测方程;最后,通过误差状态扩展卡尔曼滤波(ES-EKF)算法来进行数据融合,得到机器人的最优位置估计。使用搭建的移动定位平台在不同的室内环境下对组合定位方算法进行验证。实验结果表明在有障碍物的室内环境下,与单一UWB定位方法相比,所提算法的总体定位的最大误差减小了约4.4%,均方误差减小了约6.3%;与VIO定位方法相比,所提算法的总体定位的最大误差减小了约31.5%,均方误差减小了约60.3%。可见所提算法可为室内环境下的移动机器人提供实时、精确且鲁棒的定位结果。  相似文献   

12.
为了减小室内环境中障碍物对超宽带(UWB)传感器测距结果的影响,提出了一种基于卡尔曼滤波(KF)的超宽带室内定位算法.利用超宽带接收信号的信噪比区分视距和非视距环境,给出了超宽带传感器测距性能最小二乘标定模型,减小测距系统误差;判断相邻测距差分是否在阈值范围内,否则用卡尔曼滤波先验估计替代后验估计处理测距结果,由此减弱多径效应和非视距误差对测距的影响;用扩展卡尔曼滤波器(EKF)实现室内定位.实验结果表明:算法在复杂室内环境中可达到亚米级的动态实时定位精度.  相似文献   

13.
融合超宽带(UWB)和惯性导航系统(INS)能够实现消防员室内精确定位。为实现UWB的非视距(NLOS)误差检测,设计一种双级EKF框架。该框架以松耦合形式实现UWB/INS的数据融合,通过INS获取的初始位置估计坐标以检测UWB测量值的NLOS误差,根据检测结果计算残差矩阵来动态调整融合滤波器的测量噪声矩阵,以达到缓解NLOS误差的目的。实验结果表明,与三角不等式原理检测算法和无NLOS检测的UWB/INS简单融合算法相比,所提NLOS检测算法具备良好的检测能力、较强的稳定性及较高的定位精度。  相似文献   

14.
超宽带室内定位系统   总被引:2,自引:0,他引:2  
综述了超宽带技术和室内定位技术的主要特性,总结了无线电室内定位系统的室内定位的优点,并对现有的超宽带室内无线电定位系统进行了分析,最后阐述了室内定位系统的主要发展方向.  相似文献   

15.
当前全球导航卫星系统与激光雷达的数据融合被广泛应用于无人驾驶车辆的定位系统中,但在室内环境下由于卫星信号的丢失导致定位精度低甚至无法定位。为此提出一种基于超宽带(Ultra-Wideband,UWB)与激光雷达(Light Detection and Ranging,LiDAR)的融合定位算法。该算法以粒子滤波为基础,对两个传感器的定位数据进行互补融合解算。利用UWB实时定位数据通过提供起始粒子范围的方式来提高LiDAR的定位速率。通过求解LiDAR定位信息与粒子之间的几何距离来更新粒子的权重,从而弥补UWB的非视距误差。搭建一个室内测试场景,并将融合定位算法在智能小车平台上进行验证。实验结果表明,该方法优于UWB或LiDAR单一传感器的定位方案,而且在UWB视距受阻或LiDAR匹配失效的情况下,车辆仍能够获得良好的定位精度和定位实时性。  相似文献   

16.
为了在复杂火场环境下获取消防员的精确位置,提出基于超宽带(ultra-wideband,UWB)的消防员室内协同定位算法,充分利用目标到UWB基站以及到其他目标的测距信息进行定位。采用线性拟合方式对测量距离中存在的标准偏差进行预处理;针对目标位置解算及非视距(non-line-of-sight,NLOS)误差缓解问题,提出基于偏移扩展卡尔曼滤波的协同定位算法,根据待定位目标之间的内在联系,建立新的状态方程和量测方程,并通过构造的系数矩阵调整卡尔曼增益,修正偏离的位置估计值;针对定位坐标跳变问题,提出基于阈值筛选的均值滤波算法对定位结果进行二次优化。实验结果表明,所提算法的定位精度在弱NLOS环境下高达0.17?m,在强NLOS环境下高达0.28?m,与文中其他算法相比具有更好的定位性能,降低了定位对UWB基站分布密度高的要求,最大程度地使用了整个协同网络的资源,为深入火场内部的消防员群体因障碍物遮挡导致的定位困难或定位不准问题提供了一种解决方案。  相似文献   

17.
智能汽车的发展对高精度定位需求日益显现. 针对汽车在城市建筑群、立交桥等特定环境下, 可见GPS卫星数量下降、车载GPS和惯性测量单元(inertial measurement unit, IMU)组合定位系统中IMU产生积累误差导致不能精确定位问题, 本文提出一种基于无迹卡尔曼滤波(unscented Kalman ...  相似文献   

18.
针对复杂室内环境中密集行人定位精度低、超宽带(UWB)基站密度要求高的问题,提出一种基于UWB的密集行人三维协同定位算法。首先使用聚类算法抑制测距数据中较大非视距(NLOS)误差,并使用高斯均值混合滤波抑制标准测量误差;然后提出双层协同定位算法,建立协同定位数学模型,并结合迭代初始值获取策略进行初步定位,降低了基站数量要求,在筛选出NLOS误差较小的测距数据并修正后,进行二次定位;最后考虑行人高机动性,设计一种交互多模型卡尔曼滤波算法,缓解了定位结果跳变问题。实验结果表明,所提算法在弱NLOS环境和强NLOS环境下定位精度分别达到0.11 m、0.17 m,相比其他算法,具有较高定位精度,进一步降低了对UWB基站密度要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号