首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Surface plasmon resonance (SPR) sensors with spectral interrogation provide a high refractive index resolution, a large dynamic range and a fixed optical detection module. In this work, we propose a new multichannel spectral detection unit that uses only one spectrometer to measure the reflection spectrum from multiple sensing spots serially without any mechanical movement. This spectral detection unit is designed based on a spatial light modulator (SLM) configured as a programmable optical aperture for the spectrometer. To demonstrate this concept, a five-channel laboratory SPR prototype was built based on the proposed multichannel detection unit, and we evaluated the device's sensitivity and resolution using a refractive index test. Refractive index resolution of 1.4 × 10−6 refractive index units (RIU) can be reached using the five-channel prototype. This sensor is suitable for low-cost multichannel biosensing applications that do not contain fast kinetics.  相似文献   

2.
A fully automatic miniature surface plasmon resonance (SPR) concentration analyzer having high performance and low cost and developed using a Spreeta™ sensor was designed for field applications and concentration analysis. As in the case of Biacore™ instruments, the automatic sampling system of this device can introduce air segments between the sample/regeneration solution and buffer solution in the pipeline, which effectively prevents mixing of the solutions. A temperature sensor (AD 590) and temperature compensation method are used, which make the device insensitive to temperature fluctuations. A real-time data-smoothing algorithm for the SPR detection data is adopted; this can reduce the noise level to 5 × 10−7 RIU (refractive index units). The noise level of the sensorgram is 3.5% of the original level. Two types of self-prepared sensing chips—SMX-BSA (bovine serum albumin coated with sulfamethoxazole) and SMX-CM5 (carboxymethyl dextran coated with sulfamethoxazole)—are used to analyze the concentrations of sulfamethoxazole (SMX) standard solutions. Each chip's SMX calibration curve is established within the measurement range of 0-2000 ng/ml, and both limits of detection (LOD) are 2 ng/ml. One cycle of assay time is less than 15 min.  相似文献   

3.
A new type of differential surface plasmon (SPR) sensor integrated with a microfluidic system is presented. The working principle of the microfluidic device is based on hydrodynamic modulation of two laminar streams inside a microchannel to provide periodic changes of the environment on the SPR sensor. The modulated reflectance is then demodulated using a lock-in amplifier. The presented sensor provides sensitivities of index of refraction about 4 × 10−8 RIU together with a 4 orders of magnitude dynamic range. This method demonstrates a sensitive detection scheme which could be used for label-free detection.  相似文献   

4.
To improve the sensitivity of a single-mode D-type optical fiber sensor, we selected a D-type optical fiber sensor with 4 mm long and 4 μm core thickness made of a single-mode fiber, a Au-coating on the sensor with a thickness range of 15–32 nm, a light wavelength of 632.8 nm, and an incident angle of 86.5–89.5° for different refractive index (1.33–1.40) sensing. These simulations are based on the surface plasmon resonance (SPR) theory using the phase method which shows that the sensitivity is proportional to the refractive index, Au film thickness and lower incident angle on the sensing interface. The sensitivity is higher than 4000 (degree/RIU), and the resolution is better than 2.5 × 10−6(RIU) as the minimum phase variation is 0.01°. This device is used to detect the refractive index or gas or liquid concentration in real-time. The proposed sensor is small, simple, inexpensive, and provides an in vivo test.  相似文献   

5.
在偏振控制光强调制型SPRi传感器中,使用真实液体消光的方法实验调节困难,测量灵敏度低,线性度差.为此,提出无需真实液体消光,并将消光折射率左移的方法.首先,对在测量起点(即纯水)消光的传统方法进行光学参数的最优值仿真及其加工和调节误差仿真,结果表明,误差会引起SPRi曲线最低点在折射率轴上的左右偏移,从而影响传感器性能.接着,将消光折射率左移至1.325处,并仿真其光学参数的最优值.实验表明,与前者相比,1.325消光方法中存在的误差不会使测量曲线出现非单调的情况,此时的测量灵敏度高,线性度好,折射率分辨率达到1.85×10-6 RIU,对应NaCl溶液的检出限为35 mg/L.上述方法提高了误差存在时SPRi传感器的适用性,可以实现微量水溶液样品的高灵敏及高通量检测.  相似文献   

6.
This paper describes the detection of a low-molecular weight molecule, 3-nitrotyrosine (3-NT) (∼226 Da), in human urine by coupling indirect inhibition assay with a surface plasmon resonance (SPR) sensor. 3-NT antibody (anti-3-NT Ab, mouse IgG) was used in this assay. An optimal antibody concentration has been measured at 27.9 μg/mL in order to obtain the best performance of the sensor surface. The lowest detection limit for 3-NT with this method is 4.7 ng/mL (S/N = 3). Sensor reliability was demonstrated by good specificity, intra-assay and inter-assay relative standard deviations <8%, average recovery of 107.68 ± 19.4% and sensor surface (self-assembled monolayer) stability through more than 200 regeneration cycles and 15 days of repeated measurement. This is the first SPR biosensor assay of 3-NT in human urine. The high stability of the SPR sensor surface underlies the potential of the SPR method as a low cost diagnostic tool for clinical detection of 3-NT.  相似文献   

7.
DNA biosensors have gained increased attention over traditional diagnostic methods due to their fast and responsive operation and cost-effective design. The specificity of DNA biosensors relies on single-stranded oligonucleotide probes immobilized to a transduction platform. Here, we report the development of biosensors to detect the hippuricase gene (hipO) from Campylobacter jejuni using direct covalent coupling of thiol- and biotin-labeled single-stranded DNA (ssDNA) on both surface plasmon resonance (SPR) and diffraction optics technology (DOT, dotLab) transduction platforms. This is the first known report of the dotLab to detect targeted DNA. Application of 6-mercapto-1-hexanol as a spacer thiol for SPR gold surface created a self-assembled monolayer that removed unbound ssDNA and minimized non-specific detection. The detection limit of SPR sensors was shown to be 2.5 nM DNA while dotLab sensors demonstrated a slightly decreased detection limit of 5.0 nM (0.005 μM). It was possible to reuse the SPR sensor due to the negligible changes in sensor sensitivity (∼9.7 × 10−7 ΔRU) and minimal damage to immobilized probes following use, whereas dotLab sensors could not be reused. Results indicated feasibility of optical biosensors for rapid and sensitive detection of the hipO gene of Campylobacter jejuni using specific ssDNA as a probe.  相似文献   

8.
An alternating dielectric multi-layer device was fabricated and tested in the laboratory to show that dielectric mirrors of alternating high/low refractive index materials, based on the design of distributed Bragg reflector (DBR) for vertical cavity surface emission lasers (VCSELs), can be used in designing SPR biochemical sensors. The thickness, number of layers, and other design parameters of the device used were optimized using optical admittance loci analysis. The proof-of-concept device was fabricated with a symmetrical structure using Au/(SiO2/TiO2)4/Au.Using a 632 nm-wavelength light source on a BK7 coupling prism, our laboratory tests showed that, under water, there was an 11.5° shift in resonant peak position towards the critical angle (from 74° in a conventional single-layer Au film), and a 3.25 times decrease in FWHM (the half-peak width). Our design also resulted in a wider dynamic range of up to a 1.50 refractive index unit (RIU), compared to 1.38 RIU in a conventional single-layer Au film. Using glucose solutions in ddH2O, the calculated resolution was 1.28 × 10−5. The calculated intensity sensitivity was 10 000 a.u./RIU, about twice the improvement over the conventional single-layer Au film.  相似文献   

9.
An electro-optically modulated intensity interrogation method based on tunable waveguide coupled surface plasmon resonance sensors has been proposed. It has been theoretically and experimentally demonstrated that the proposed scheme can enable sensitive measurement of measurand variations. By modulating the refractive index in the waveguide layer, this interrogation method yields modulated signal whose amplitude is related to measurand's refractive index. This amplitude modulated signal offers a higher signal to noise ratio and eliminates additive noise in the sensor system. A preliminary investigation using saline buffers with different NaCl concentrations shows a resolution of 2.3 × 10?6 refractive index unit by our approach. Resolution can be controlled by the amplitude of the applied modulation voltage and can be further enhanced by optimizing the device structure or improving the electro-optical (E-O) coefficient of the E-O material. This approach is simple, stable, and promising for low-cost or multi-channel SPR biosensor applications.  相似文献   

10.
A waveguide interferometer based free-chlorine sensing technique has been developed. A polymer film for a specific free chlorine binding was designed, synthesized and applied on the surface of a waveguide. The material is based on cyanuric acid moieties along each repeating unit covalently tethered to poly(norbornene)s. Chlorine sensing was accomplished by measuring the refractive index change of the polymer, as a result of the reaction between cyanuric acid and free chlorine, interferometrically by the evanescent field extended above the waveguide surface. The free chlorine binding to cyanuric acid is reversible and a linear calibration curve from 0.1 to 10 mg L−1 of HOCl concentration was obtained with the level of detection (LOD) and level of quantification (LOQ) of 0.047 and 0.328 mg L−1 of HOCl, respectively. A free chlorine measurement with less interference from combined chlorine than DPD based colorimetric method was developed as a result of the different sensing responses of free and combined chlorine. Free chlorine residual was measured in samples collected from tap water and poultry processing waters by both optical sensor and DPD-based colorimetric method. Good agreement between both methods was observed although the levels for free chlorine measured by the optical sensor are systematically lower than the readings obtained from the DPD method. The difference might be the result of the interference from combined chlorine during the DPD measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号