首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
提出了一种新的不确定性机器人跟踪控制策略,文中基于计算转矩控制结构,采用了函数链网络实现一个神经网络补偿器,并叠加一个鲁棒控制项,以补偿模型的不确定性部分,另外,还考虑了神经网络逼近误差非一致有界的情形,设计了自适应的鲁棒控制项,算法可保证跟踪误差及神经网络权估计最终一致有界,与其它有关基于计算转矩控制的方法相比,该算法既不需要测量关节角加速度,也不要求惯性矩阵已知,理论和仿真均证明了算法和可靠性和有效性。  相似文献   

2.
给出一种新的异步电动机直接转矩控制算法.该算法通过计算定子磁链矢量增量,使得给定转矩与实际转矩的差值以及给定磁链与实际磁链的差值趋向于零.算法的实现运用了线性化的方法,在一个极小的采样周期内,计算出转矩增量和磁通增量,以此推导出所需的定子磁链增量角与转矩增量及磁通增量两者之间的线性方程,进一步导出所需的定子电压矢量,并确定新的定子磁链位置.该算法不需要进行三角函数和坐标变换计算,易于实现.最后通过Matlab/Simulink仿真验证了该算法的有效性.  相似文献   

3.
直接转矩控制是一种新型的交流电机变频驱动控制方法。本详细介绍了异步电机直接转矩控制算法在TMS320F240 DSP控制器上的实现方法。TMS320F240 DSP芯片丰富的片内外设资源给编程带来了极大方便。程序能够基于直接转矩控制算法高效地控制电机运行。并且,实现了DSP程序与PC上位机的RS-232串口通信。在PC上可以通过串口向DSP发送命令、设置参数。本设计的程序对直接转矩控制算法及其改进算法的研究有积极意义。  相似文献   

4.
用神经网络建立感应电机直接转矩控制系统的定子磁链观测器和开关状态选择器,并用单个神经网络训练的方法来处理直接转矩控制器的复杂运算。仿真结果表明,用此方案构成的系统有较好的动态性且减少了延迟性。  相似文献   

5.
本文将人工神经元用于机器人的位置控制,无需建立机器人的精确动力学模型。通过神经元的自学习来设定和调整控制量,对单关节机器人进行了仿真研究,结果表明,神经元控制器的控制效果好且鲁棒性强。  相似文献   

6.
7.
基于机器人的神经网络预测控制算法   总被引:1,自引:0,他引:1  
针对预测控制机理在处理非线性模型控制存在较大的困难,提出了将BP神经网络和广义预测控制(GPC)相结合后应用于网络控制系统的思想,构造了神经网络预测控制算法,其实质是用BP神经网络作为预测模型,产生预测信号,对系统进行反馈校正,并通过误差迭代求取广义预测的最优控制律,从而克服了对非线性系统难以辨识模型的困难,利用神经网络"黑箱"的功能达到对非线性系统的预测控制.以机器人为控制对象进行仿真,取得了较好的控制效果.  相似文献   

8.
针对预测控制机理在处理非线性模型控制存在较大的困难,提出了将BP神经网络和广义预测控制(GPC)相结合后应用于网络控制系统的思想,构造了神经网络预测控制算法,其实质是用BP神经网络作为预测模型,产生预测信号,对系统进行反馈校正,并通过误差迭代求取广义预测的最优控制律,从而克服了对非线性系统难以辨识模型的困难,利用神经网络“黑箱”的功能达到对非线性系统的预测控制。以机器人为控制对象进行仿真,取得了较好的控制效果。  相似文献   

9.
针对采用常规PID控制器很难取得很好的控制效果,提出了单神经元PID与常规PID复合控制的开关磁阻电机调速系统的新方法,利用具有自学习和自适应能力的单神经元来构成开关磁阻电机的单神经元自适应控制器,不但结构简单,而且能适应环境变化,具有较强的鲁棒性。以速度误差为系统外环输入,大偏差时采用常规PID控制,小偏差时采用单神经元控制。外环的输出变量为内环的目标转矩,送入60kW三相6/4结构的开关磁阻电机直接转矩调速系统内环。仿真结果表明,这种复合控制方法解决了常规控制方法因电机数学模型难以精确确定而无法确定控制参数的问题,并克服了常规P I D控制器参数固定,控制非线性系统差的缺点,很好的解决了系统上升时间与超调的矛盾。系统具有很好的抗干扰能力与鲁棒性。  相似文献   

10.
在传统直接转矩控制系统基础上,采用BP网络设计了状态选择器,并通过BP算法进行训练,对实际控制系统进行了仿真,结果证明了方案的可行性。  相似文献   

11.
    
For rigid body robot manipulators, the computed torque approach provides asymptotic stability for tracking control tasks. However, the state dependent matrices needed to complete the computed torque algorithm are normally unknown and possibly too complex for a real-time implementation. This paper proposes a simple controller with computed-torque-like structure enhanced by integral sliding mode, having pole-placement capability. For the reduction of the chattering effect generated by the sliding mode part, the integral sliding mode is posed as a perturbation estimator with quasi-continuous control action provided by an additional low-pass filter. The time-constant of the latter tunes the controller functionality between the perturbation compensation and a pure integral sliding mode control, as well as between chattering reduction and system robustness. A comparative simulation study between conventional sliding mode control, integral sliding mode control, and integral sliding mode in form of a perturbation estimator for a two-link robot arm validates the proposed design.  相似文献   

12.
    
A neural-network-based motion controller in task space is presented in this paper. The proposed controller is addressed as a two-loop cascade control scheme. The outer loop is given by kinematic control in the task space. It provides a joint velocity reference signal to the inner one. The inner loop implements a velocity servo loop at the robot joint level. A radial basis function network (RBFN) is integrated with proportional-integral (PI) control to construct a velocity tracking control scheme for the inner loop. Finally, a prototype technology based control system is designed for a robotic manipulator. The proposed control scheme is applied to the robotic manipulator. Experimental results confirm the validity of the proposed control scheme by comparing it with other control strategies.  相似文献   

13.
A novel neural network-based robust finite-time control strategy is proposed for the trajectory tracking of robotic manipulators with structured and unstructured uncertainties, in which the actuator dynamics is fully considered. The controller, which possesses finite-time convergence and strong robustness, consists of two parts, namely a neural network for approximating the nonlinear uncertainty function and a modified variable structure term for eliminating the approximate error and guaranteeing the finite-time convergence. According to the analysis based on the Lyapunov theory and the relative finite-time stability theory, the neural network is asymptotically convergent and the controlled robotic system is finite time stable. The proposed controller is then verified on a two-link robotic manipulator by simulations and experiments, with satisfactory control performance being obtained even in the presence of various uncertainties and external disturbances.  相似文献   

14.
This paper describes analysis and control for a holonomic omnidirectional mobile manipulator, in which the holonomic omnidirectional platform consists of three lateral orthogonal wheel assemblies and a mounted manipulator with three rotational joints is located at the center of gravity of the platform. We first introduce the kinematic model for the mobile manipulator and derive the dynamical model by using the Newton–Euler method, where a model which simultaneously takes account of features of both the manipulator and the mobile parts is given to analyze the effect of the movement of mounted manipulator on the platform. Then, the computed torque control and the resolved acceleration control methods are used to show that the holonomic omnidirectional mobile manipulator can be controlled so as to retain any end-effector position and orientation, irrespective of the direction of external applied force. The validity of the model and the effectiveness of the present mobile manipulator are proved by using several numerical simulations and 3D animations.  相似文献   

15.
机器人计算力矩不确定性的神经网络补偿控制*   总被引:1,自引:0,他引:1  
提出一种由计算力矩控制器和神经网络补偿控制器相结合的控制方案,探讨了用神经网络补偿机器人计算力矩不确定性的方法,推导了网络权值的自适应调整律,并证明了系统的稳定性和误差的收敛性.该方案结构简单、鲁棒性强,且神经网络补偿器有较好的适应性,无须事先知道机器人动力学参数和结构的精确值.对机器人轨迹跟踪的仿真结果表明,所提方案具有很好的鲁棒性和抗干扰能力.  相似文献   

16.
衡量负载模拟器系统性能的关键指标是多余力矩的抑制。针对无人机负载模拟器系统的非线性及多余力矩强扰动的特点,依据神经网络的非线性逼近和自学习特性,提出了一种基于神经网络和前馈相结合的复合控制器,用来提高系统的性能。复合控制器利用前馈来补偿定常多余力,利用神经网络进行在线辨识、控制来补偿系统的非线性部分,很好地抑制了多余力矩。该文给出了具体的控制结构和算法。仿真结果还表明该方法极大地改善了系统动态加载性能,有很强的鲁棒性。  相似文献   

17.
利用异步电动机的定子电压方程和磁链方程构造神经网络速度观测器来获得电动机的转速,观测器简单易行,通过遗传算法来优化神经网络的权值,使神经网络的权值达到最优。最后通过Matlab仿真,验证了系统设计的有效性和可行性。  相似文献   

18.
19.
基于径向基函数网络的永磁同步电机直接转矩控制   总被引:8,自引:0,他引:8  
对永磁同步电机直接转矩控制系统特性进行了深入研究,提出一种新的径向基函数神经网络控制器,给出了神经网络控制器的结构设计、样本选取及训练方法.利用系统中的开关表作为导师对径向基函数神经网络控制器进行训练,实现了永磁同步电机直接转矩控制的径向基函数神经元网络输出矢量选择.该控制器可以简化获得输出电压矢量的过程,并具有并行计算速度快、转矩响应迅速的性能.仿真结果验证了该控制器的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号