首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
The upper bound of the optimal number of clusters in fuzzy clustering   总被引:7,自引:0,他引:7  
The upper bound of the optimal number of clusters in clustering algorithm is studied in this paper. A new method is proposed to solve this issue. This method shows that the rule cmax≤n~(1/n), which is popular in current papers, is reasonable in some sense. The above conclusion is tested and analyzed by some typical examples in the literature, which demonstrates the validity of the new method.  相似文献   

2.
针对传统K-means聚类算法的聚类结果易随不同的初始聚类中心波动的问题,采用最大距离积法优化K-means聚类算法的初始聚类中心。传统的K-means聚类算法都假定样本的各维特征对聚类的贡献相同,影响了聚类效果和模型估计精度。为了考虑样本各维特征对聚类的不同影响,利用一种新型的特征加权K-means聚类算法逐步调整特征权值,最终有效改善了聚类效果。利用本文方法建立组合支持向量机模型,将其用于双酚A生产过程质量指标的软测量建模中,仿真结果表明该算法能够有效改进数据的分类效果并提高软测量模型的估计精度。  相似文献   

3.
This paper presents an idea of clustering resolution. On the basis of the idea, fuzzy clustering algorithms based on resolution are deduced, which naturally comprise a set of clustering algorithms. Thus, c-means algorithm and fuzzy c-means algorithms are actually special examples in the set. As an application for codebook design in image compression based on vector quantization, fuzzy clustering algorithms based on multiresolution are developed, which are almost prior to conventional algorithms in all aspects.  相似文献   

4.
采用模糊C均值聚类算法(FCM)与支持向量机(SVM)相结合的多模型建模方法:较单一支持向量机软测量模型而言,可以有效解决复杂工业对象的强非线性和大工况范围的问题。但是传统的模糊C均值聚类算法必须依赖先验知识预先确定聚类个数。本文通过建立样本间的相似矩阵,利用模糊聚类最大矩阵元法确定FCM最佳聚类个数,再由FCM对训练样本数据进行聚类并用SVM构建组合软测量模型,得到多模型软测量系统。在对双酚A结晶单元工艺分析的基础上,将该方法:应用于结晶单元苯酚含量的软测量建模,仿真结果:证明该建模方法:提高了模型的估计精度,具有更好的可行性和有效性,能够满足工业生产的要求。  相似文献   

5.
提出一种基于谱聚类的协同推荐算法(SCBCF)。首先从用户——项目二分网络的单顶点投影中得到用户之间的相似矩阵,然后对该矩阵应用谱聚类算法,将用户聚成k类,并将得到的聚类结果用于数据平滑和邻居结点的选择,最后基于最近邻居集评分行为,对目标用户产生推荐。在Movie-Lens上的实验结果证明本文方法比传统的协同过滤算法能更好地应用于二分网络的协同推荐。  相似文献   

6.
k中心点聚类算法在层次数据的应用   总被引:2,自引:0,他引:2  
探讨了近年来提出的聚类概念与聚类过程、k中心点聚类的算法,在此基础上提出了一种基于层次数据模型的k中心聚类的改进算法.该算法一方面针对层次变量提出了相关的中值点概念;另一方面对传统k中心点算法进行了改进.最后对改进算法的复杂度进行了分析,由分析结果得出改进算法要比传统k中心点算法每次迭代耗费时间略少,但在总耗费时间上远远小于k中心点算法,大幅度提高了算法的整体性能.  相似文献   

7.
特征选择是数据挖掘和机器学习领域中一种常用的数据预处理技术。在无监督学习环境下,定义了一种特征平均相关度的度量方法,并在此基础上提出了一种基于特征聚类的特征选择方法 FSFC。该方法利用聚类算法在不同子空间中搜索簇群,使具有较强依赖关系(存在冗余性)的特征被划分到同一个簇群中,然后从每一个簇群中挑选具有代表性的子集共同构成特征子集,最终达到去除不相关特征和冗余特征的目的。在 UCI 数据集上的实验结果表明,FSFC 方法与几种经典的有监督特征选择方法具有相当的特征约减效果和分类性能。  相似文献   

8.
基于信息熵加权的协同聚类改进算法   总被引:1,自引:0,他引:1  
为了改进协同聚类中计算量较大的问题,提出一种信息熵加权的模糊协同聚类算法.首先引入信息熵来衡量隶属度差异矩阵中包含的不确定性信息,然后根据有效信息量定义相似性距离中的权重,最后通过权重对聚类的贡献实现子集之间的协同聚类.实验结果显示,新算法能充分利用数据子集中蕴涵的相关信息,以较高的计算效率实现更准确的协同聚类.与已有算法相比,新算法能自适应地计算协同关系强度,简化了参数设置和协同函数的复杂计算.  相似文献   

9.
为了提高受随机值脉冲噪声污染的图像的滤波效果,提出了一种新的滤波算法。对噪声图像进行初步滤波,分辨出图像中比较明显的噪声;根据图像局部像素点的相似性和噪声点的孤立性,计算出噪声图像的相关矩阵;运用模糊C均值聚类算法对所求相关矩阵进行迭代聚类,分离出噪声点和正常像素点;对噪声点进行中值滤波。实验结果表明,与传统算法相比,该算法能更好地滤除噪声点,保护了更多的图像细节,具有良好的滤波效果。  相似文献   

10.
Clustering has been widely used in different fields of science, technology, social science, etc. Naturally, clusters are in arbitrary (non-convex) shapes in a dataset. One important class of clustering is distance based method. However, distance based clustering methods usually find clusters of convex shapes. Classical single-link is a distance based clustering method, which can find arbitrary shaped clusters. It scans dataset multiple times and has time requirement of O(n2), where n is the size of the dataset. This is potentially a severe problem for a large dataset. In this paper, we propose a distance based clustering method, l-SL to find arbitrary shaped clusters in a large dataset. In this method, first leaders clustering method is applied to a dataset to derive a set of leaders; subsequently single-link method (with distance stopping criteria) is applied to the leaders set to obtain final clustering. The l-SL method produces a flat clustering. It is considerably faster than the single-link method applied to dataset directly. Clustering result of the l-SL may deviate nominally from final clustering of the single-link method (distance stopping criteria) applied to dataset directly. To compensate deviation of the l-SL, an improvement method is also proposed. Experiments are conducted with standard real world and synthetic datasets. Experimental results show the effectiveness of the proposed clustering methods for large datasets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号