首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we study the problems of detecting holes and antiholes in general undirected graphs, and we present algorithms for these problems. For an input graph G on n vertices and m edges, our algorithms run in O(n + m2) time and require O(n m) space; we thus provide a solution to the open problem posed by Hayward et al. asking for an O(n4)-time algorithm for finding holes in arbitrary graphs. The key element of the algorithms is the use of the depth-first-search traversal on appropriate auxiliary graphs in which moving between any two adjacent vertices is equivalent to walking along a P4 (i.e., a chordless path on four vertices) of the input graph or on its complement, respectively. The approach can be generalized so that for a fixed constant k ≥ 5 we obtain an O(nk-1)-time algorithm for the detection of a hole (antihole resp.) on at least k vertices. Additionally, we describe a different approach which allows us to detect antiholes in graphs that do not contain chordless cycles on five vertices in O(n + m2) time requiring O(n + m) space. Again, for a fixed constant k ≥ 6, the approach can be extended to yield O(nk-2)-time and O(n2)-space algorithms for detecting holes (antiholes resp.) on at least k vertices in graphs which do not contain holes (antiholes resp.) on k - 1 vertices. Our algorithms are simple and can be easily used in practice. Finally, we also show how our detection algorithms can be augmented so that they return a hole or an antihole whenever such a structure is detected in the input graph; the augmentation takes O(n + m) time and space.  相似文献   

2.
Graph-Modeled Data Clustering: Exact Algorithms for Clique Generation   总被引:1,自引:0,他引:1  
We present efficient fixed-parameter algorithms for the NP-complete edge modification problems Cluster Editing and Cluster Deletion. Here, the goal is to make the fewest changes to the edge set of an input graph such that the new graph is a vertex-disjoint union of cliques. Allowing up to k edge additions and deletions (Cluster Editing), we solve this problem in O(2.27k + |V|3) time; allowing only up to k edge deletions (Cluster Deletion), we solve this problem in O(1.77k + |V|3) time. The key ingredients of our algorithms are two easy to implement bounded search tree algorithms and an efficient polynomial-time reduction to a problem kernel of size O(k3). This improves and complements previous work. Finally, we discuss further improvements on search tree sizes using computer-generated case distinctions.  相似文献   

3.
In this paper a parallel algorithm is given that, given a graph G=(V,E) , decides whether G is a series parallel graph, and, if so, builds a decomposition tree for G of series and parallel composition rules. The algorithm uses O(log \kern -1pt |E|log ^\ast \kern -1pt |E|) time and O(|E|) operations on an EREW PRAM, and O(log \kern -1pt |E|) time and O(|E|) operations on a CRCW PRAM. The results hold for undirected as well as for directed graphs. Algorithms with the same resource bounds are described for the recognition of graphs of treewidth two, and for constructing tree decompositions of treewidth two. Hence efficient parallel algorithms can be found for a large number of graph problems on series parallel graphs and graphs with treewidth two. These include many well-known problems like all problems that can be stated in monadic second-order logic. Received July 15, 1997; revised January 29, 1999, and June 23, 1999.  相似文献   

4.
A linear arrangement (LA) is an assignment of distinct integers to the vertices of a graph. The cost of an LA is the sum of lengths of the edges of the graph, where the length of an edge is defined as the absolute value of the difference of the integers assigned to its ends. For many application one hopes to find an LA with small cost. However, it is a classical NP-complete problem to decide whether a given graph G admits an LA of cost bounded by a given integer. Since every edge of G contributes at least one to the cost of any LA, the problem becomes trivially fixed-parameter tractable (FPT) if parameterized by the upper bound of the cost. Fernau asked whether the problem remains FPT if parameterized by the upper bound of the cost minus the number of edges of the given graph; thus whether the problem is FPT "parameterized above guaranteed value." We answer this question positively by deriving an algorithm which decides in time O(m + n + 5.88k) whether a given graph with m edges and n vertices admits an LA of cost at most m + k (the algorithm computes such an LA if it exists). Our algorithm is based on a procedure which generates a problem kernel of linear size in linear time for a connected graph G. We also prove that more general parameterized LA problems stated by Serna and Thilikos are not FPT, unless P = NP.  相似文献   

5.
We consider graph drawings in which vertices are assigned to layers and edges are drawn as straight line-segments between vertices on adjacent layers. We prove that graphs admitting crossing-free h-layer drawings (for fixed h) have bounded pathwidth. We then use a path decomposition as the basis for a linear-time algorithm to decide if a graph has a crossing-free h-layer drawing (for fixed h). This algorithm is extended to solve related problems, including allowing at most k crossings, or removing at most r edges to leave a crossing-free drawing (for fixed k or r). If the number of crossings or deleted edges is a non-fixed parameter then these problems are NP-complete. For each setting, we can also permit downward drawings of directed graphs and drawings in which edges may span multiple layers, in which case either the total span or the maximum span of edges can be minimized. In contrast to the Sugiyama method for layered graph drawing, our algorithms do not assume a preassignment of the vertices to layers. Research initiated at the International Workshop on Fixed Parameter Tractability in Graph Drawing, Bellairs Research Institute of McGill University, Holetown, Barbados, Feb. 9–16, 2001, organized by S. Whitesides. Research of Canada-based authors is supported by NSERC; research of Quebec-based authors is also supported by a grant from FCAR. Research of D.R. Wood completed while visiting McGill University. Research of G. Liotta supported by CNR and MURST.  相似文献   

6.
G. Kortsarz 《Algorithmica》2001,30(3):432-450
A k -spanner of a connected graph G=(V,E) is a subgraph G' consisting of all the vertices of V and a subset of the edges, with the additional property that the distance between any two vertices in G' is larger than the distance in G by no more than a factor of k . This paper concerns the hardness of finding spanners with a number of edges close to the optimum. It is proved that for every fixed k , approximating the spanner problem is at least as hard as approximating the set-cover problem. We also consider a weighted version of the spanner problem, and prove an essential difference between the approximability of the case k=2 and the case k\geq 5 . Received October 30, 1998; revised March 4, 1999, and April 17, 2000.  相似文献   

7.
We consider the problem of updating efficiently the minimum value b over a weighted graph, so that edges with a cost less than b induce a spanning subgraph satisfying a k-edge or 2-vertex connectivity constraint, when the cost of an edge of the graph is updated. Our results include update algorithms of almost linear time (up to poly-logarithmic factors) in the number of vertices for all considered connectivity constraints (for fixed k), and a worst case construction showing that these algorithms are almost optimal in their class.  相似文献   

8.
In the literature, there are quite a few sequential and parallel algorithms to solve problems on distance-hereditary graphs. Two well-known classes of graphs, which contain trees and cographs, belong to distance-hereditary graphs. We consider the vertex-coloring problem on distance-hereditary graphs. Let T/sub d/(|V|, |E|) and P/sub d/d(|V|, |E|) denote the time and processor complexities, respectively, required to construct a decomposition tree representation of a distance-hereditary graph G=(V,E) on a PRAM model M/sub d/. Our algorithm runs in O(T/sub d/(|V|, |E|)+log|V|) time using O(P/sub d/(|V|, |E|)+|V|/log|V|) processors on M/sub d/. The best known result for constructing a decomposition tree needs O(log/sup 2/ |V|) time using O(|V|+|E|) processors on a CREW PRAM. If a decomposition tree is provided as input, we solve the problem in O(log |V|) time using O(|V|/log |V|) processors on an EREW PRAM. To the best of our knowledge, there is no parallel algorithm for this problem on distance-hereditary graphs.  相似文献   

9.
We give improved parameterized algorithms for two “edge” problems MAXCUT and MAXDAG, where the solution sought is a subset of edges. MAXCUT of a graph is a maximum set of edges forming a bipartite subgraph of the given graph. On the other hand, MAXDAG of a directed graph is a set of arcs of maximum size such that the graph induced on these arcs is acyclic. Our algorithms are obtained through new kernelization and efficient exact algorithms for the optimization versions of the problems. More precisely our results include:
(i)
a kernel with at most αk vertices and βk edges for MAXCUT. Here 0<α?1 and 1<β?2. Values of α and β depends on the number of vertices and the edges in the graph;
(ii)
a kernel with at most 4k/3 vertices and 2k edges for MAXDAG;
(iii)
an O(k1.2418) parameterized algorithm for MAXCUT in undirected graphs. This improves the O(k1.4143)1 algorithm presented in [E. Prieto, The method of extremal structure on the k-maximum cut problem, in: The Proceedings of Computing: The Australasian Theory Symposium (CATS), 2005, pp. 119-126];
(iv)
an O(n2) algorithm for optimization version of MAXDAG in directed graphs. This is the first such algorithm to the best of our knowledge;
(v)
an O(k2) parameterized algorithm for MAXDAG in directed graphs. This improves the previous best of O(k4) presented in [V. Raman, S. Saurabh, Parameterized algorithms for feedback set problems and their duals in tournaments, Theoretical Computer Science 351 (3) (2006) 446-458];
(vi)
an O(k16) parameterized algorithm to determine whether an oriented graph having m arcs has an acyclic subgraph with at least m/2+k arcs. This improves the O(k2) algorithm given in [V. Raman, S. Saurabh, Parameterized algorithms for feedback set problems and their duals in tournaments, Theoretical Computer Science 351 (3) (2006) 446-458].
In addition, we show that if a directed graph has minimum out degree at least f(n) (some function of n) then Directed Feedback Arc Set problem is fixed parameter tractable. The parameterized complexity of Directed Feedback Arc Set is a well-known open problem.  相似文献   

10.
Two vertices of an undirected graph are called k -edge-connected if there exist k edge-disjoint paths between them (equivalently, they cannot be disconnected by the removal of less than k edges from the graph). Equivalence classes of this relation are called classes of k -edge-connectivity or k -edge-connected components. This paper describes graph structures relevant to classes of 4 -edge-connectivity and traces their transformations as new edges are inserted into the graph. Data structures and an algorithm to maintain these classes incrementally are given. Starting with the empty graph, any sequence of q Same-4-Class? queries and n Insert-Vertex and m Insert-Edge updates can be performed in O(q + m + n log n) total time. Each individual query requires O(1) time in the worst-case. In addition, an algorithm for maintaining the classes of k -edge-connectivity (k arbitrary) in a (k-1) -edge-connected graph is presented. Its complexity is O(q + m + n) , with O(M +k 2 n log (n/k)) preprocessing, where M is the number of edges initially in the graph and n is the number of its vertices. Received July 5, 1995; revised October 21, 1996.  相似文献   

11.
In this paper we initiate the study of a “dynamic” variant of the classical Vertex Cover problem, the Eternal Vertex Cover problem introduced by Klostermeyer and Mynhardt, from the perspective of parameterized algorithms. This problem consists in placing a minimum number of guards on the vertices of a graph such that these guards can protect the graph from any sequence of attacks on its edges. In response to an attack, each guard is allowed either to stay in his vertex, or to move to a neighboring vertex. However, at least one guard has to fix the attacked edge by moving along it. The other guards may move to reconfigure and prepare for the next attack. Thus at every step the vertices occupied by guards form a vertex cover. We show that the problem admits a kernel of size k4(k+1)+2k, which shows that the problem is fixed parameter tractable when parameterized by the number of available guards k. Finally, we also provide an algorithm with running time O(2O(k2)+nm) for Eternal Vertex Cover, where n is the number of vertices and m the number of edges of the input graph. In passing we also observe that Eternal Vertex Cover is NP-hard, yet it has a polynomial time 2-approximation algorithm.  相似文献   

12.
We consider the problem of maintaining on-line the triconnected components of a graphG. Letn be the current number of vertices ofG. We present anO(n)-space data structure that supports insertions of vertices and edges, and queries of the type “Are there three vertex-disjoint paths between verticesv 1 andv 2?” A sequence ofk operations takes timeO(k·α(k, n)) ifG is biconnected(α(k, n) denotes the well-known Ackermann's function inverse), and timeO(n logn+k) ifG is not biconnected. Note that the bounds do not depend on the number of edges ofG. We use theSPQR-tree, a versatile data structure that represents the decomposition of a biconnected graph with respect to its triconnected components, and theBC-tree, which represents the decomposition of a connected graph with respect to its biconnected components.  相似文献   

13.
定义了两类有向网络——ORC-网络和IRC-网络,并且提出一个计算它们的根通信可靠性(网络的一个特定结点(根点)能与其余每个结点通信的概率)的多项式时间算法.对于ORC-网络和IRC-网络,该算法的时间复杂度分别是O(|E|)和O(|V|·|E|),这里,|V|,|E|分别表示网络所含结点和边的数量.  相似文献   

14.
The k-Leaf Power recognition problem is a particular case of graph power problems: For a given graph it asks whether there exists an unrooted tree—the k-leaf root—with leaves one-to-one labeled by the graph vertices and where the leaves have distance at most k iff their corresponding vertices in the graph are connected by an edge. Here we study "error correction" versions of k-Leaf Power recognition—that is, adding or deleting at most l edges to generate a graph that has a k-leaf root. We provide several NP-completeness results in this context, and we show that the NP-complete Closest 3-Leaf Power problem (the error correction version of 3-Leaf Power) is fixed-parameter tractable with respect to the number of edge modifications or vertex deletions in the given graph. Thus, we provide the seemingly first nontrivial positive algorithmic results in the field of error compensation for leaf power problems with k > 2. To this end, as a result of independent interest, we develop a forbidden subgraph characterization of graphs with 3-leaf roots.  相似文献   

15.
Graph homomorphism, also called H-coloring, is a natural generalization of graph coloring: There is a homomorphism from a graph G to a complete graph on k vertices if and only if G is k-colorable. During recent years the topic of exact (exponential-time) algorithms for NP-hard problems in general, and for graph coloring in particular, has led to extensive research. Consequently, it is natural to ask how the techniques developed for exact graph coloring algorithms can be extended to graph homomorphisms. By the celebrated result of Hell and Nesetril, for each fixed simple graph H, deciding whether a given simple graph G has a homomorphism to H is polynomial-time solvable if H is a bipartite graph, and NP-complete otherwise. The case where H is the cycle of length 5, is the first NP-hard case different from graph coloring. We show that for an odd integer , whether an input graph G with n vertices is homomorphic to the cycle of length k, can be decided in time . We extend the results obtained for cycles, which are graphs of treewidth two, to graphs of bounded treewidth as follows: if H is of treewidth at most t, then whether input graph G with n vertices is homomorphic to H can be decided in time .  相似文献   

16.
Although there are polynomial algorithms of finding a 2-partition or a 3-partition for a simple undirected 2-connected or 3-connected graph respectively,there is no general algorithm of finding a k-partition for a k-connected graph G=(V,E),where k is the vertex connectivity of G.In this paper,an O(k^2n^2) general algorithm of finding a k-partition for a k-connected graph is proposed,where n=|V|.  相似文献   

17.
[k]步可达性查询用于回答图[G]中从顶点[u]到达顶点[v]最多[k]步是否存在路径,但其多用于无权图的可达性研究。针对加权图,在图中构建了最早到达、逆向最早到达和最晚到达等三个索引,并应用这三个索引实现对不可达顶点的快速剪枝,从而有效地缩减了加权图的规模。运用该方法建立索引并剪枝顶点的时间复杂度与空间复杂度分别为[O(n+e)]和[O(n)],这里[n]和[e]分别为图中顶点的数目和边的数目。该方法可以与Dijkstra算法、Floyd算法和A*算法等多种传统算法相结合,并应用于最短路径求解,从而提高传统算法计算性能。最后以物流配送网络为例进行了实验验证,实验结果表明提出的方法可以正确并高效地对不必要计算的顶点进行剪枝,从而加快了最短路径求解速度,验证了提出方法的有效性。  相似文献   

18.
Subexponential algorithms for partial cover problems   总被引:1,自引:0,他引:1  
Partial Cover problems are optimization versions of fundamental and well-studied problems like Vertex Cover and Dominating Set. Here one is interested in covering (or dominating) the maximum number of edges (or vertices) using a given number k of vertices, rather than covering all edges (or vertices). In general graphs, these problems are hard for parameterized complexity classes when parameterized by k. It was recently shown by Amini et al. (2008) [1] that Partial Vertex Cover and Partial Dominating Set are fixed parameter tractable on large classes of sparse graphs, namely H-minor-free graphs, which include planar graphs and graphs of bounded genus. In particular, it was shown that on planar graphs both problems can be solved in time 2O(k)nO(1).During the last decade there has been an extensive study on parameterized subexponential algorithms. In particular, it was shown that the classical Vertex Cover and Dominating Set problems can be solved in subexponential time on H-minor-free graphs. The techniques developed to obtain subexponential algorithms for classical problems do not apply to partial cover problems. It was left as an open problem by Amini et al. (2008) [1] whether there is a subexponential algorithm for Partial Vertex Cover and Partial Dominating Set. In this paper, we answer the question affirmatively by solving both problems in time not only on planar graphs but also on much larger classes of graphs, namely, apex-minor-free graphs. Compared to previously known algorithms for these problems our algorithms are significantly faster and simpler.  相似文献   

19.
We show how the problem of determining shortest paths of even or odd length between two specified vertices in a graph G = (V, E) can be reduced to the problem of finding a shortest alternating path with respect to a specific matching in a related graph H. This problem can be solved by a Dijkstra-like labeling procedure of complexity O(|V|2) respectively O(|E|log|V|). Interpreting this procedure appropriately the method can then be applied directly on the given graph G.  相似文献   

20.
A matching in a graph is a set of edges no two of which share a common vertex. In this paper we introduce a new, specialized type of matching which we call uniquely restricted matchings, originally motivated by the problem of determining a lower bound on the rank of a matrix having a specified zero/ non-zero pattern. A uniquely restricted matching is defined to be a matching M whose saturated vertices induce a subgraph which has only one perfect matching, namely M itself. We introduce the two problems of recognizing a uniquely restricted matching and of finding a maximum uniquely restricted matching in a given graph, and present algorithms and complexity results for certain special classes of graphs. We demonstrate that testing whether a given matching M is uniquely restricted can be done in O(|M||E|) time for an arbitrary graph G=(V,E) and in linear time for cacti, interval graphs, bipartite graphs, split graphs and threshold graphs. The maximum uniquely restricted matching problem is shown to be NP-complete for bipartite graphs, split graphs, and hence for chordal graphs and comparability graphs, but can be solved in linear time for threshold graphs, proper interval graphs, cacti and block graphs. Received April 12, 1998; revised June 21, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号