首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
The integration of production and distribution decisions presents a challenging problem for manufacturers trying to optimize their supply chain. At the planning level, the immediate goal is to coordinate production, inventory, and delivery to meet customer demand so that the corresponding costs are minimized. Achieving this goal provides the foundations for streamlining the logistics network and for integrating other operational and financial components of the system. In this paper, a model is presented that includes a single production facility, a set of customers with time varying demand, a finite planning horizon, and a fleet of vehicles for making the deliveries. Demand can be satisfied from either inventory held at the customer sites or from daily product distribution. In the most restrictive case, a vehicle routing problem must be solved for each time period. The decision to visit a customer on a particular day could be to restock inventory, meet that day’s demand or both. In a less restrictive case, the routing component of the model is replaced with an allocation component only. A procedure centering on reactive tabu search is developed for solving the full problem. After a solution is found, path relinking is applied to improve the results. A novel feature of the methodology is the use of an allocation model in the form of a mixed integer program to find good feasible solutions that serve as starting points for the tabu search. Lower bounds on the optimum are obtained by solving a modified version of the allocation model. Computational testing on a set of 90 benchmark instances with up to 200 customers and 20 time periods demonstrates the effectiveness of the approach. In all cases, improvements ranging from 10–20% were realized when compared to those obtained from an existing greedy randomized adaptive search procedure (GRASP). This often came at a three- to five-fold increase in runtime, however.  相似文献   

3.
The binary Si–Zn and Mn–Si systems have been critically evaluated based upon available phase equilibrium and thermodynamic data, and optimized model parameters have been obtained giving the Gibbs energies of all phases as functions of temperature and composition. The liquid solution has been modeled with the Modified Quasichemical Model (MQM) to account for the short-range-ordering. The results have been combined with those of our previous optimizations of the Mg–Si, Mg–Zn and Mg–Mn systems to predict the phase diagrams of the Mg–Si–Zn and Mg–Mn–Si systems. The predictions have been compared with available data.  相似文献   

4.
5.
All available thermodynamic and phase diagram data of the binary Al–Bi and Al–Sb systems and ternary Mg–Al–Bi and Mg–Al–Sb systems were critically evaluated, and all reliable data were used simultaneously to obtain the best set of the model parameters for each ternary system. The Modified Quasichemical Model used for the liquid solution shows a high predictive capacity for the ternary systems. The ternary liquid miscibility gaps in the Mg–Al–Bi and Mg–Al–Sb systems resulting from the ordering behaviour of the liquid solutions can be well reproduced with one additional ternary parameter. Using the optimized model parameters, the experimentally unexplored portions of the Mg–Al–Bi and Mg–Al–Sb ternary phase diagrams were more reasonably predicted. All calculations were performed using the FactSage thermochemical software package.  相似文献   

6.
Ce3+–Mn2+–Tb3+ cooperative barium–yttrium-orthosilicate phosphors composed of Ba9-3m/2-n-3p/2CemMnnTbpY2Si6O24 (m = 0.005–0.4, n = 0–0.5, p = 0–0.5) were prepared using a solid-state reaction. The X-ray diffraction patterns of the resultant phosphors were examined to index the peak positions. The photoluminescence (PL) excitation and emission spectra of the Ce3+–Mn2+–Tb3+ activated phosphors were clearly monitored. The dependence of the luminescent intensity of the Mn2+–Tb3+ co-doped Ba9-3m/2CemY2Si6O24 host lattices on Ce3+ content (m = 0.025, 0.1) was also investigated. Co-doping Mn2+ into the Ce3+–Tb3+ co-doped host structure enabled energy transfer from Ce3+ to Mn2+; this energy transfer mechanism is discussed. The phosphors of Ce3+–Mn2+–Tb3+ doped Ba9Y2Si6O24 host lattice were prepared for efficient white-light emission under NUV excitation. With these phosphors, the desired CIE values including white region of the emission spectra were achieved.  相似文献   

7.
We consider the numerical integration of multivariate functions defined over the unit hypercube. Here, we especially address the high–dimensional case, where in general the curse of dimension is encountered. Due to the concentration of measure phenomenon, such functions can often be well approximated by sums of lower–dimensional terms. The problem, however, is to find a good expansion given little knowledge of the integrand itself. The dimension–adaptive quadrature method which is developed and presented in this paper aims to find such an expansion automatically. It is based on the sparse grid method which has been shown to give good results for low- and moderate–dimensional problems. The dimension–adaptive quadrature method tries to find important dimensions and adaptively refines in this respect guided by suitable error estimators. This leads to an approach which is based on generalized sparse grid index sets. We propose efficient data structures for the storage and traversal of the index sets and discuss an efficient implementation of the algorithm. The performance of the method is illustrated by several numerical examples from computational physics and finance where dimension reduction is obtained from the Brownian bridge discretization of the underlying stochastic process.  相似文献   

8.
We consider charged transport within a porous medium, which at the pore scale can be described by the non-stationary Stokes–Nernst–Planck–Poisson (SNPP) system. We state three different homogenization results using the method of two-scale convergence. In addition to the averaged macroscopic equations, auxiliary cell problems are solved in order to provide closed-form expressions for effective coefficients. Our aim is to study numerically the convergence of the models for vanishing microstructure, i. e., the behavior for $\varepsilon \rightarrow 0$ ε → 0 , where $\varepsilon $ ε is the characteristic ratio between pore diameter and size of the porous medium. To this end, we propose a numerical scheme capable of solving the fully coupled microscopic SNPP system and also the corresponding averaged systems. The discretization is performed fully implicitly in time using mixed finite elements in two space dimensions. The averaged models are evaluated using simulation results and their approximation errors in terms of $\varepsilon $ ε are estimated numerically.  相似文献   

9.
10.
Channels composed by Einstein–Podolsky–Rosen (EPR) pairs are capable of teleporting arbitrary multipartite states. The question arises whether EPR channels are also optimal against imperfections. In particular, the teleportation of Greenberger–Horne–Zeilinger states (GHZ) requires three EPR states as the channel and full measurements in the Bell basis. We show that, by using two GHZ states as the channel, it is possible to transport any unknown three-qubit state of the form \(c_0|000\rangle +c_1|111\rangle \). The teleportation is made through measurements in the GHZ basis, and, to obtain deterministic results, in most of the investigated scenarios, four out of the eight elements of the basis need to be unambiguously distinguished. Most importantly, we show that when both systematic errors and noise are considered, the fidelity of the teleportation protocol is higher when a GHZ channel is used in comparison with that of a channel composed by EPR pairs.  相似文献   

11.
This paper examines the p-th moment globally asymptotic stability in probability and p-th moment stochastic input-to-state stability for a type of impulsive stochastic system withMarkovian switching. By applying the generalized average dwell time approach, some novel sufficient conditions are obtained to ensure these stability properties. Furthermore, the coefficient of the Lyapunov function is allowed to be time-varying, which generalizes and improves the existing results. As corollaries, nonlinear restrictions on the drift and diffusion coefficients are used as substitutes for some previous conditions. Two examples are provided to illustrate the effectiveness of the theoretical results.  相似文献   

12.
The problem of mean square exponential stability for a class of impulsive stochastic fuzzy cellular neural networks with distributed delays and reaction–diffusion terms is investigated in this paper. By using the properties of M-cone, eigenspace of the spectral radius of nonnegative matrices, Lyapunov functional, Itô’s formula and inequality techniques, several new sufficient conditions guaranteeing the mean square exponential stability of its equilibrium solution are obtained. The derived results are less conservative than the results recently presented in Wang and Xu (Chaos Solitons Fractals 42:2713–2721, 2009), Zhang and Li (Stability analysis of impulsive stochastic fuzzy cellular neural networks with time varying delays and reaction–diffusion terms. World Academy of Science, Engineering and Technology 2010), Huang (Chaos Solitons Fractals 31:658–664, 2007), and Wang (Chaos Solitons Fractals 38:878–885, 2008). In fact, the systems discussed in Wang and Xu (Chaos Solitons Fractals 42:2713–2721, 2009), Zhang and Li (Stability analysis of impulsive stochastic fuzzy cellular neural networks with time varying delays and reaction–diffusion terms. World Academy of Science, Engineering and Technology 2010), Huang (Chaos Solitons Fractals 31:658–664, 2007), and Wang (Chaos Solitons Fractals 38:878–885, 2008) are special cases of ours. Two examples are presented to illustrate the effectiveness and efficiency of the results.  相似文献   

13.
This paper investigates the problem of the pth moment exponential stability for a class of stochastic recurrent neural networks with Markovian jump parameters. With the help of Lyapunov function, stochastic analysis technique, generalized Halanay inequality and Hardy inequality, some novel sufficient conditions on the pth moment exponential stability of the considered system are derived. The results obtained in this paper are completely new and complement and improve some of the previously known results (Liao and Mao, Stoch Anal Appl, 14:165–185, 1996; Wan and Sun, Phys Lett A, 343:306–318, 2005; Hu et al., Chao Solitions Fractals, 27:1006–1010, 2006; Sun and Cao, Nonlinear Anal Real, 8:1171–1185, 2007; Huang et al., Inf Sci, 178:2194–2203, 2008; Wang et al., Phys Lett A, 356:346–352, 2006; Peng and Liu, Neural Comput Appl, 20:543–547, 2011). Moreover, a numerical example is also provided to demonstrate the effectiveness and applicability of the theoretical results.  相似文献   

14.
This paper is concerned with a class of semilinear stochastic delayed reaction–diffusion equations driven by Lévy noise in a separable Hilbert space. We establish sufficient conditions to ensure the existence of a unique positive solution. Moreover, we study blow-up of solutions in finite time in mean Lp-norm sense. Several examples are given to illustrate applications of the theory.  相似文献   

15.
16.
The aim of this work is to present some strategies to solve numerically controllability problems for the two-dimensional heat equation, the Stokes equations and the Navier–Stokes equations with Dirichlet boundary conditions. The main idea is to adapt the Fursikov–Imanuvilov formulation, see Fursikov and Imanuvilov (Controllability of Evolutions Equations, Lectures Notes Series, vol 34, Seoul National University, 1996); this approach has been followed recently for the one-dimensional heat equation by the first two authors. More precisely, we minimize over the class of admissible null controls a functional that involves weighted integrals of the state and the control, with weights that blow up near the final time. The associated optimality conditions can be viewed as a differential system in the three variables \(x_1\), \(x_2\) and t that is second-order in time and fourth-order in space, completed with appropriate boundary conditions. We present several mixed formulations of the problems and, then, associated mixed finite element Lagrangian approximations that are relatively easy to handle. Finally, we exhibit some numerical experiments.  相似文献   

17.
18.
In this paper, we shall offer sufficient conditions for the oscillation of all solutions to neutral functional differential equations of mixed type of the form
,here p and q are periodic functions.  相似文献   

19.
The problem of \(p\) -synchronization for a class of stochastic non-autonomous reaction-diffusion Cohen–Grossberg networks with mixed delays by using periodically intermittent feedback control is investigated in this paper. Some exponential synchronization criteria based on \(p\) -norm are obtained by utilizing some analysis methods. These proofs indirectly generalized the Halanay inequality and facilitated the proof processing of the existing works. Finally, an illustrative example is given to show the effectiveness of the theoretical results.  相似文献   

20.
A novel discontinuous Galerkin (DG) method is developed to solve time-dependent bi-harmonic type equations involving fourth derivatives in one and multiple space dimensions. We present the spatial DG discretization based on a mixed formulation and central interface numerical fluxes so that the resulting semi-discrete schemes are \(L^2\) stable even without interior penalty. For time discretization, we use Crank–Nicolson so that the resulting scheme is unconditionally stable and second order in time. We present the optimal \(L^2\) error estimate of \(O(h^{k+1})\) for polynomials of degree k for semi-discrete DG schemes, and the \(L^2\) error of \(O(h^{k+1} +(\Delta t)^2)\) for fully discrete DG schemes. Extensions to more general fourth order partial differential equations and cases with non-homogeneous boundary conditions are provided. Numerical results are presented to verify the stability and accuracy of the schemes. Finally, an application to the one-dimensional Swift–Hohenberg equation endowed with a decay free energy is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号