首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
为克服维数灾难和过拟合等传统算法所不可规避的问题,利用支持向量机(Support Vector Machine,SVM)提出基于时序数据时间相关性的核函数修正选择方法,并以真实的二氧化硫(SO2)数据为实验数据验证该方法的有效性.实验结果表明采用时序核函数对测试数据集的拟合效果更好,并对模型泛化能力有一定的提高.  相似文献   

2.
支持向量机分类与回归算法的关系研究   总被引:1,自引:0,他引:1  
基于统计学习理论的支持向量机算法以其优秀的学习性能已广泛用于解决分类与回归问题.分类算法通过求两类样本之间的最大间隔来获得最优分离超平面,其几何意义相当直观,而回归算法的几何意义就不那么直观了.另外,有些适用于分类问题的快速优化算法却不能用于回归算法中.研究了分类与回归算法之间的关系,为快速分类算法应用于回归模型提供了一定的理论依据.  相似文献   

3.
基于核函数的支持向量机分类方法   总被引:2,自引:0,他引:2  
支持向量机是目前正在兴起的一种新的数据挖掘分类方法,阐述了支持向量机的理论基础及核函数,阐明了支持向量机分类的基本思想,分析了支持向量机的优缺点,对支持向量机在海量数据分类中的应用前景进行了展望。  相似文献   

4.
核函数支持向量机   总被引:3,自引:0,他引:3  
概述了基于核函数方法的支持向量机。首先简要叙述支持向量机的基本思想和核特征空间,然后重点介绍核函数支持向量机的前沿理论与领先技术,同时描述了核函数支持向量机在关键领域的应用。  相似文献   

5.
首先,讨论了支持向量回归(support vector regression,SVR)的基本原理.然后,从信息几何的角度分析了核函数的几何结构,通过共形变换(conformal transformation)构建与数据依赖(data-dependent)的核函数,使得特征空间在支持向量附近的体积元缩小,以改善SVR的机器性能.实验结果表明了方法的有效性.  相似文献   

6.
超核函数支持向量机   总被引:1,自引:0,他引:1  
贾磊  廖士中 《计算机科学》2008,35(12):148-150
支持向量机是当前机器学习、模式识别和数据挖掘等领域的重要学习方法,核函数的构造是研究和应用支持向量机的关键问题.针对这一问题,提出了核函数构造的组合理论,定义了超核函数概念,并通过多项式组合现有核函数构造出一类超核函数.具体地,首先分析了一般核函数存在的过学习和欠学习现象,然后证明了组合理论构造的核函数的Mercer性质,并通过在仿真数据集和标准数据集上的对比实验,验证了超核函数的性能.理论分析和实验结果阐明了所提出的超核函数组合构造理论的合理性和有效性,开拓了模型选择组合方法的研究途径.  相似文献   

7.
孙德山  赵君  高釆葵  郑平  刘小菲 《计算机科学》2014,41(4):230-232,243
根据一类分类思想,提出一种基于线性规划的支持向量回归算法,该算法揭示了一类分类和回归之间的关系。实验在一个正弦函数、一个混沌时间序列和一个实际的数据上进行。实验结果表明,所给算法的泛化性能优于标准的支持向量回归算法(ε-SVR)、线性规划支持向量回归算法(LP-SVR)和最小二乘支持向量回归算法(LS-SVR),实验结果也说明了所给算法的有效性和可行性。  相似文献   

8.
基于支持向量机核函数的条件,将Sobolev Hilbert空间的再生核函数进行改进,给出一种新的支持向量机核函数,并提出一种改进的最小二乘再生核支持向量机的回归模型,该回归模型的参数被减少,且仿真实验结果表明:最小二乘支持向量机的核函数采用改进的再生核函数是可行的,改进后的再生核函数不仅具有核函数的非线性映射特征,而且也继承了该再生核函数对非线性逐级精细逼近的特征,回归的效果比一般的核函数更为细腻。  相似文献   

9.
基于支持向量机分类问题的勒让德核函数   总被引:1,自引:1,他引:0  
基于勒让德正交多项式,提出了一类新的核函数——勒让德核函数。在双螺旋集和标准UCI数据集上的实验表明,在鲁棒性与泛化性能方面,该核函数比常用的核函数(多项式核、高斯径向基核等)具有更好的表现,而且其参数仅在自然数中取值,能大大缩短参数优化时间。  相似文献   

10.
惠康华  李春利 《计算机工程》2005,31(B07):128-129,132
支持向量机是基于统计学习理论的模式分类器。它通过结构风险最小化准则和核函数方法,较好地解决了模式分类器复杂性和推广性之间的矛盾,引起了大家对模式识别领域的极大关注。近年来,支持向量机在手写体识别、人脸识别、文本分类等领域取得了很大的成功。文章将一种新的核函数用于虹膜识别,并与传统的多项式核函数、高斯核函数进行了比较。初步结果显示了该核函数的应用潜力。  相似文献   

11.
用于医学图像分类的支持向量机算法研究   总被引:6,自引:0,他引:6  
支持向量机(SVM)方法就是利用最优分类面(线)将两类样本在特征空间或输入空间中无错误地分开,而且要使两类的分类空隙最大。因此标准的SVM方法需要求解二次规划问题,计算量很大,本文介绍一种方法解决这个问题,并成功地将该算法应用干医学图像数据挖掘的分类问题。  相似文献   

12.
一种基于近似支撑矢量机(PSVM)的交通目标分类方法   总被引:1,自引:0,他引:1  
本文介绍了支撑向量机的特点,给出了实际应用中传统支撑矢量机存在的问题。为了克服支撑矢量机算法的不足,引入了一种近似支撑矢量机(PSVM)算法,并将此算法用于交通目标的分类识别。实验结果表明此算法比BP神经网络法准确率高,比传统的SVM法的效率高。  相似文献   

13.
研究一种用支持向量机(SVM)进行多类音频分类的方法,其中引入增广两类分类法(AB法)设计多类分类器。该算法把音频分为四类:音乐、纯语音、带背景音的语音和典型的环境音,并分析了这几类音频的八个区别性特征,包括修正低能量成分比率(MLER)和修正基频(MPF)两个新特征以及频域总能量、子带能量、频率中心等其它六个基本特征,综合考察了不同特征集在基于SVM分类器中的分类精度。实验结果表明,提取的音频特征有效,基于SVM的多类音频分类效果良好。  相似文献   

14.
提出多特征结合的图像分类方法,分别提取颜色特征和LBP纹理特征,同时提出Adaboost算法对特征进行选择,选择最能表示图像的特征,这样既降低了特征的维数,又提高了分类的精度。最后对基于SVM的多类图像分类方法进行了研究,提出在二类支持向量机的基础上构造多类分类器的方法,实验结果表明,提出的方法能够很好地用于图像分类。  相似文献   

15.
基于支持向量机的激光焊接过程的非线性辨识   总被引:1,自引:0,他引:1  
针对激光焊接过程非线性系统建模困难的问题,研究基于支持向量机的非线性系统回归建模方法.支持向量机由核函数与训练集完全刻画,进一步提高支持向量机性能的关键是针对给定的系统设计恰当的核函数.用改进的核函数,对具有典型非线性特性的焊接过程进行辨识.仿真结果验证了该方法的有效性.  相似文献   

16.
约简数据集的支持向量分类机算法   总被引:1,自引:0,他引:1  
支持向量机是当前智能计算研究领域的热点之一。基于支持向量机的大样本学习一直是一个非常具有挑战性的研究课题。对于分类问题给出一种基于相似度的约简数据集的方法。给出的新算法大大地减少了训练样本的数目和所求解的支持向量机算法的规模,有效地加快了支持向量机算法的训练速度。仿真实验表明:新算法较为简单、实用。  相似文献   

17.
根据支持向量机理论和肤色信息分布特点,提出利用像素点的8邻域信息,用C-支持向量机的方法进行图像的肤色检测.在YCbCr颜色空间,去除照度分量,用像素点及其8邻域内各点的Cb、Cr分量构成的向量作为输入,像素点所属类别为输出,高斯函数为核函数,采用序列最小最优化学习算法,构造了C-支持向量机肤色检测器.实验表明,当核宽度为80,惩罚系数C为200时,该肤色检测器的检测正确率可达到0.977.  相似文献   

18.
结合ReliefF与支持向量机的特征选择方法研究   总被引:3,自引:0,他引:3  
利用ReliefF作为特征选择方法,采用基于支持向量机的分类准确率作为特征子集的评估准则,进而决定删除的特征数目.用UCL数据集中Segmenatation数据集进行测试,通过实验研究证明,采用结合ReliefF与支持向量机的方法进行特征选择,能够有效地提高分类准确率.  相似文献   

19.
采用模糊支持向量机时,隶属度函数的设计是整个算法的关键。详细阐述了已存在的隶属度函数,重点分析了目前应用较广的紧密度模糊支持向量机,针对紧密度模糊支持向量机的不足,提出了一种扩展的紧密度模糊支持向量机,并将其应用到文本分类领域。实验结果表明,与传统模糊支持向量机相比,该算法分类性能更好,抗噪能力更强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号