首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 562 毫秒

1.  弹载BDS/SINS深组合自适应CKF滤波方法研究  
   韩林  陈帅  陈德潘  张博雅《电光与控制》,2019年第4期
   针对弹道导弹高动态、非线性的特点,引入了基于三阶球面-径向容积准则的非线性容积卡尔曼滤波(CKF)算法。此外,针对其特点,研究了发射惯性系下BDS/SINS深组合导航下的自适应容积卡尔曼滤波(ACKF)算法。该算法根据Sage滤波开窗法的思想和渐消的思想,通过引入多重次优渐消因子到CKF滤波器中,自适应地在线调整CKF滤波器的观测误差协方差阵,在提高滤波精度的同时实现对快速变化的状态进行强有力的跟踪。实验结果表明:多重次优渐消因子的引入使得CKF滤波器可以更多地利用系统的先验信息,ACKF滤波器对快速变化的状态具有更强的跟踪,系统误差在较短的时间内收敛,提高了组合导航系统的动态性能。    

2.  五阶容积卡尔曼滤波算法及其应用  
   赵曦晶  刘光斌  汪立新  何志昆  赵晗《红外与激光工程》,2015年第4期
   容积卡尔曼滤波(CKF)是一种新型的非线性滤波方法,可获得优于扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)的滤波精度和滤波效率。但是,传统的CKF基于三阶容积准则而提出,因此滤波精度受到限制,为进一步提高CKF滤波性能,文中将容积准则由三阶扩展到五阶,采用两种不同容积点集选择方案,提出一种新型的五阶CKF算法。该算法可有效改善传统CKF在精度方面的理论局限,并有效改善一般五阶CKF计算量大的问题。机动目标跟踪仿真结果表明了新方法的有效性和可行性。    

3.  高阶容积卡尔曼滤波及其在目标跟踪中的应用  
   张龙  崔乃刚  杨峰  路菲  卢宝刚《哈尔滨工程大学学报》,2016年第4期
   针对传统的容积卡尔曼滤波(CKF)估计精度有限的问题,提出了一种基于任意阶容积规则的高阶容积卡尔曼滤波(HCKF)方法并应用于机动目标跟踪问题。传统的CKF采用三阶球面-相径容积规则,可获得优于其他非线性滤波如不敏卡尔曼滤波(UKF)的估计精度和数值稳定性。为了进一步提高CKF的估计精度,在基于点的高斯近似滤波框架下,分别使用Genz积分方法和矩匹配法推导出任意阶的球面规则和相径规则,以此构造高阶球面-相径容积规则来计算高斯型积分,并建立高阶容积卡尔曼滤波算法。将提出的HCKF算法应用于机动目标跟踪问题中并进行数值仿真。仿真结果表明,相对于传统容积卡尔曼滤波,高阶容积卡尔曼滤波对目标位置和速度估计的精度分别提高了11%和24%,可获得更高的估计精度。    

4.  相关噪声下非线性滤波及在动力定位中的应用  
   林孝工  焦玉召  梁坤  李恒《控制理论与应用》,2016年第33卷第8期
   针对实际系统状态估计具有互相关噪声的情况,研究了互相关噪声下非线性系统状态估计问题.首先基于贝叶斯理论推导出新的互相关噪声下的贝叶斯估计算法.然后使用三阶球面径向基(spherical-radial)规则计算贝叶斯估计中的非线性积分,当噪声互相关时,基于扩展卡尔曼滤波的思想分别计算状态矩阵和观测矩阵的Jacobi矩阵,可得互相关噪声下的容积卡尔曼滤波(cubature Kalman filtering with one-step auto-correlated and two-step crosscorrelated noise,CKF--CCN);当噪声不相关时,可得容积卡尔曼滤波(cubature Kalman filtering,CKF)及其平方根形式(SCKF).最后通过动力定位系统仿真实验,表明提出的CKF-CCN的估计精度要高于SCKF和仅考虑一步互相关的平方根容积卡尔曼滤波(SCKF-CN).    

5.  自适应混合阶SSRCKF及其在组合导航中的应用  
   《计算机工程与应用》,2019年第18期
   传统的容积卡尔曼滤波(CKF)在处理强非线性系统时存在精度低甚至发散的问题,高阶容积卡尔曼滤波(HCKF)提高精度的同时也会大幅度提高计算复杂度,同时在高维系统中存在负权值影响算法的稳定性。针对以上问题提出了一种自适应混合阶球面最简相径容积卡尔曼滤波(AMSSRCKF),该算法采用混合阶最简相径容积规则(MSSR)采样获得了比CKF更高的精度,同时结合了多重渐消因子强跟踪滤波算法,提高了算法的鲁棒性。最后,将该算法应用于组合导航系统仿真,结果表明,AMSSRCKF可以有效抑制系统状态突变的影响,提高了组合导航系统的定位精度和鲁棒性。    

6.  交互式多模型七阶容积卡尔曼滤波算法  
   冉娜  乔雪《电子测量与仪器学报》,2018年第6期
   为提高非线性机动目标的跟踪精度,提出交互式多模型七阶容积卡尔曼滤波(IMM-7th CKF)算法。采用对非线性系统滤波效果更好的七阶容积卡尔曼滤波(7th CKF)作为交互式多模型(IMM)算法的子滤波器,对各模型状态进行估计,将IMM算法和7th CKF结合起来,提高对非线性机动目标的跟踪效果,最后采用典型机动目标跟踪问题验证IMM-7th CKF的跟踪性能。仿真结果表明,IMM-7th CKF相比交互式多模型容积卡尔曼滤波(IMM-CKF)和交互式多模型五阶容积卡尔曼滤波(IMM-5th CKF)具有更高的滤波精度。    

7.  基于综合型卡尔曼滤波的锂离子电池荷电状态估算  
   谷苗  夏超英  田聪颖《电工技术学报》,2019年第2期
   针对锂离子电池的荷电状态(SOC)估算问题,给出一种综合型卡尔曼滤波算法。该算法采用递推最小二乘算法(RLS)对锂离子电池模型参数进行实时在线辨识和参数更改;采用综合型卡尔曼滤波器估计电池SOC,即针对模型状态空间方程中的线性部分和非线性部分,分别使用线性卡尔曼滤波器(KF)和平方根高阶容积卡尔曼滤波器(SHCKF)计算。两种卡尔曼滤波器结合的综合型策略能够有效减小计算复杂度。其中,SHCKF结合了五阶球面-径向容积法则和平方根滤波技术,比扩展卡尔曼滤波器(EKF)、无迹卡尔曼滤波器(UKF)和容积卡尔曼滤波器(CKF)等传统非线性滤波器的估计精度更高,数值稳定性更强。实验结果证明了该综合型算法的可行性和有效性。    

8.  扩展容积卡尔曼滤波-卡尔曼滤波组合算法  
   赵曦晶  刘光斌  汪立新  何志昆  姚志成《红外与激光工程》,2014年第2期
   传统单一线性或非线性滤波方法往往难以获得最优线性/非线性混合动态系统状态估计,针对这一问题,结合卡尔曼滤波(KF)方法可获得线性状态估计最优解、计算量小等优势,提出了一种基于KF和扩展容积卡尔曼滤波(A-CKF)的组合滤波方法。该方法将系统状态分解为线性状态与非线性状态两部分,分别采用KF和简化两次扩展容积卡尔曼滤波(STA-CKF)方法进行系统状态估计。机动目标跟踪和捷联惯性导航系统非线性对准仿真结果表明,相比于Rao-Blackwellized粒子滤波方法,新方法在保证滤波精度的前提下,使得计算成本有效降低;相比于STA-CKF方法,新方法在滤波精度和滤波实时性方面均得到明显提高。    

9.  基于5阶降维平方根-容积卡尔曼滤波的动基座对准应用研究  被引次数:1
   黄湘远  汤霞清  武萌  吴伟胜《兵工学报》,2016年第37卷第2期
   为提高动基座下捷联惯导系统的对准精度、数值稳定性和减小计算量,将5阶容积卡尔曼滤波(CKF)、降维算法、多次离散和平方根(SR)滤波结合起来,形成5阶降维SR-CKF非线性对准方案。为减小5阶CKF的计算量,建立非线性-线性分离的系统模型,引入降维算法;为提高1阶龙格-库塔法的逼近精度,设计多次离散和时间更新的滤波框架;为提高数值稳定性,推导了5阶降维SR-CKF;比较常规3阶SR-CKF、5阶CKF和5阶降维SR-CKF的各项特性。实车动基座对准实验结果表明:该方案对准精度高、数值稳定性强、计算量小,满足应用需要。    

10.  基于平方根容积卡尔曼滤波的发电机动态状态估计  
   安军  杨振瑞  周毅博  桂建忠  石岩《电工技术学报》,2017年第32卷第12期
   发电机动态状态估计是电力系统动态安全分析的重要内容。针对容积卡尔曼滤波(CKF)在迭代中协方差阵不对称或非正定导致的估计精度下降甚至滤波发散问题,利用平方根滤波(SRF)能确保协方差阵非负定和数值稳定性方面的优势,提出基于平方根容积卡尔曼滤波(SRCKF)的发电机动态状态估计方法,并给出了计算步骤。最后,利用仿真系统和实际系统比较了SRCKF、CKF和无迹卡尔曼滤波(UKF)三种算法的估计性能,证明了SRCKF算法能够解决CKF滤波中因协方差阵非正定导致的滤波发散问题;同时SRCKF算法在计算效率、滤波精度和数值稳定性方面均优于CKF和UKF算法。    

11.  基于CKF的高动态载波跟踪算法研究  
   纪博  孙武  姚元福《现代电子技术》,2015年第3期
   CKF是一种新型非线性高斯滤波算法,它依据三阶容积准则,使用数值积分来近似加权高斯积分,无需对非线性模型进行线性化,具有较高的精度和较好的鲁棒性。在传统的锁频加锁相载波跟踪环路的基础上引入了CKF,对载波相位误差、载波频率误差、载波频率变化率误差等参数进行估计,同时将CKF与UKF算法进行了仿真比较。结果表明,在高动态环境中CKF算法对接收机动态信号的跟踪性能优于UKF算法。    

12.  基于随机积分的非线性滤波跟踪算法  
   董天发  易伟  郝凯利  李小龙  孔令讲《雷达科学与技术》,2015年第2期
   针对雷达系统的非线性目标跟踪存在精度低、滤波易发散等问题,提出一种新的非线性滤波算法——随机球面径向积分滤波算法(SSIF)。该滤波算法基于随机积分准则,利用随机球面积分准则和随机径向积分准则来近似函数积分。所提的滤波算法和传统的非线性滤波算法,例如扩展卡尔曼滤波、不敏卡尔曼滤波和容积卡尔曼滤波等相比在计算复杂度相当的情况下,不仅可以消除系统误差具有更高的跟踪精度,而且可以防止滤波发散提高滤波稳定度。通过蒙特卡洛仿真实验表明,所提出的非线性滤波算法整体性能明显优于传统的滤波算法。    

13.  再入弹道目标跟踪的球面单纯形-径向容积卡尔曼滤波算法  
   李春月  廖育荣  倪淑燕  陈帅《导弹与航天运载技术》,2018年第2期
   提出一种再入弹道目标跟踪的球面单纯形-径向容积卡尔曼滤波算法(Spherical Simplex Radial Cubature Kalman Filter,SSRCKF),有效提高了地基雷达对再入段弹道目标的实时跟踪精度。首先,在测站坐标系下建立了再入弹道目标的非线性动力学方程和量测方程,利用四阶龙格-库塔方法得到适用于滤波计算的离散形式,具有比传统欧拉法更高的离散精度;然后,利用Spherical Simplex-Radial准则逼近非线性函数的高斯加权积分,基于贝叶斯滤波框架得到SSRCKF算法,具有比CKF更高非线性滤波精度。对再入弹道目标跟踪仿真实验中,相比于CKF算法,SSRCKF算法的定位精度提高约4.5m,定速精度提高约0.06m/s。    

14.  广义容积卡尔曼滤波  
   刘洋  黄盼《计算机工程与应用》,2015年第14期
   传统CKF采用三阶球面径向容积定律来计算非线性积分,该定律将球面数值积分与径向积分相结合,难以构造高阶CKF算法。此外,CKF在许多非线性问题上表现出估计精度低等问题。为了解决以上问题,提出了一种广义CKF族,所提算法彻底抛弃了球面径向积分定律。进一步指出,传统CKF是这种滤波算法的特殊形式。实验结果表明,高阶CKF比传统的非线性滤波器准确性更高。    

15.  加性噪声下增广容积卡尔曼滤波及其目标跟踪应用  
   《计算机应用与软件》,2017年第3期
   传统容积卡尔曼滤波(CKF)有良好的滤波精度和较低的计算复杂度,使其广泛被应用于目标跟踪系统。但在高维非线性和波动性大的目标跟踪系统中,3阶和高阶CKF分别存在滤波精度不足和稳定性低的问题。为提高CKF的滤波精度并保证稳定性,讨论和给出加性噪声下的增广容积卡尔曼滤波(ACKF)。在仿真中,将CKF、UKF和ACKF应用于5维高非线性目标跟踪,并分析比较三者的目标跟踪性能。研究结果表明,在高维非线性目标跟踪系统中,3阶ACKF可以获得更好目标跟踪精度和稳定性,以及可接受的计算复杂度。    

16.  3种确定性采样非线性滤波算法的复杂度分析  被引次数:1
   张召友  郝燕玲  吴旭《哈尔滨工业大学学报》,2013年第45卷第12期
   为考察非线性卡尔曼滤波在SINS/GPS组合导航中的实时性问题,对无迹卡尔曼滤波(UKF)、中心差分卡尔曼滤波(CDKF)和容积卡尔曼滤波(CKF)3种常用确定性采样非线性算法的实现复杂度进行了理论分析,并总结了实时性选择的依据.根据确定性采样卡尔曼滤波的统一迭代步骤,以等效浮点操作数作为评价准则对3种算法进行了复杂度分析,导出了精确计算复杂度的表达式,并进一步对三者之间的差异进行了推导.将上述算法应用于SINS/GPS紧耦合导航中,并进行了蒙特卡罗仿真.结果表明:3种算法的精度一致,UKF复杂度最高,在状态维数高于量测维数的系统中CKF复杂度最低,但在高维量测系统中CDKF可望获得最小的硬件开销.    

17.  基于强跟踪容积卡尔曼滤波的永磁同步电机转子位置估计  
   《微电机》,2020年第3期
   对于电动汽车内置式永磁同步电机(IPMSM)驱动系统,转子位置的精度在高性能无传感器矢量控制中起到极其重要的作用。当电机在运行过程中受到外界干扰和系统状态突变时,传统的容积卡尔曼滤波(CKF)算法的动态响应较差,导致对转子位置的跟踪能力下降,估计精度降低,甚至引起滤波器发散。因此,本文采用强跟踪容积卡尔曼滤波(STCKF)算法,在传统的容积卡尔曼滤波的基础上引入了强跟踪滤波器(STF),进而动态改善容积卡尔曼滤波算法的估计精度和跟踪能力。在Matlab/Simulink中对改进的转子位置估计算法进行仿真分析,并且进行测功机台架实验。实验结果表明:强跟踪容积卡尔曼滤波算法响应快,跟踪能力强,估计精度相比于传统的容积卡尔曼滤波算法提高19%。    

18.  四元数约束的容积卡尔曼滤波及其应用  
   钱华明  黄蔚  孙龙《哈尔滨工业大学学报》,2014年第46卷第7期
   针对一些非线性系统状态变量中存在四元数约束的情况,提出了一种四元数约束下的容积卡尔曼滤波(quaternion constrained cubature kalman filter,QCCKF)算法.基于最小约束代价函数,采用三阶球面-相径容积规则近似计算系统状态的后验均值和协方差,给出了QCCKF滤波递推公式.设计的QCCKF算法可以有效地对状态进行估计,扩展了CKF的应用范围.最后对飞行器姿态估计系统进行仿真,仿真结果表明,该算法估计精度优于常规CKF和无迹四元数估计法(unscented quaternion estimator, USQUE),并满足四元数约束条件,较好地解决了非线性系统存在四元数约束的问题,验证了算法的有效性.    

19.  自适应高阶容积H_∞滤波算法在目标跟踪中的应用  
   张丹威  王晓东  黄国勇  包俊《化工自动化及仪表》,2019年第5期
   为了改善传统容积卡尔曼滤波器(CKF)的滤波性能,将高阶容积卡尔曼滤波算法与非线性H_∞鲁棒滤波算法相结合,提出一种自适应高阶容积H_∞滤波算法(AHCHF)。该算法引入数值稳定性更强的奇异值分解方法(SVD)替换传统的Cholesky分解;同时将H_∞鲁棒滤波的思想应用于高阶容积卡尔曼滤波;并基于新息与约束水平反比的关系,对约束水平γ值进行自适应选取,兼顾了滤波精度和系统的鲁棒性。仿真结果表明:相比于传统CKF算法和高阶CKF算法,AHCHF算法具有更高的滤波精度和鲁棒性。    

20.  自适应SICKF及在目标跟踪中的应用  
   熊超  解武杰《压电与声光》,2018年第40卷第4期
   针对容积卡尔曼滤波(CKF) 估计精度在系统状态或参数突变时下降的问题,结合均方根嵌入式容积卡尔曼滤波(SICKF)和强跟踪滤波(STF)思想,提出了一种自适应SICKF(ASICKF)方法。在SICKF获得高估计精度的同时引入STF条件,根据系统输出残差获得自适应渐消因子,将其引入系统输出协方差均方根阵和互协方差阵中对滤波增益进行实时修正,强迫系统输出残差序列始终正交,从而使SICKF算法具备强跟踪能力。为验证所提ASICKF算法性能,利用数值仿真将其应用于存在突变情况的目标跟踪问题中。仿真结果表明,ASICKF在系统状态突变时仍能保持较高的估计精度,算法稳定性和适应能力较好。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号