首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
在蛋白质相互作用(Protein-Protein Interaction,PPI)网络中检测蛋白质功能模块有助于预测未知蛋白质的功能模块。随着蛋白质相互作用有效数据迅速增长,如何通过PPI网络获得有效的蛋白质功能模块成为最大挑战。阐述PPI网络的发展及现状,通过对当前蛋白质功能模块检测算法进行归纳总结,把它们分为单元聚类和多元聚类,并对每类的代表性方法进行详细阐述;讨论蛋白质相互作用网络功能模块检测研究所面临的挑战及未来研究方向。  相似文献   

2.
探测蛋白质相互作用网络中的功能模块对于理解生物系统的组织和功能具有重要的意义。目前,普遍的做法是将蛋白质相互作用网络表示成一个图,利用各种图聚类算法来挖掘功能模块。本文采用了基于模块度优化的图聚类算法来探测蛋白质相互作用网络中的集团,从具有2617个节点11855个相互作用的酵母蛋白相互作用网络中探测出68个集团。对于得到的集团,首先从拓扑结构的角度验证其的确是内部连接稠密的子图,然后分析了MIPS数据库中ComplexCat提供的已知的蛋白质复合体与这些集团的重叠情况,发现很多蛋白质复合体完全包含在某些集团中,最后使用超几何聚集分布的P值来分析一个集团对某个特定功能的富集程度,并根据最小的P值对应的功能来注释该集团的主要功能,发现集团中大部分的蛋白质具有相同的功能。研究结果表明,该方法探测的集团具有重要的生物学功能意义。  相似文献   

3.
蛋白质相互作用(Protein-protein interaction,PPI)网络是生命活动中一种极其重要的生物分子关系网络,利用计算方法从PPI网络中检测功能模块是目前生物信息学中一项重要的研究课题. 本文首先总结了功能模块检测过程的基本流程,说明了预处理和后处理的作用;其次,提出了一种模块检测方法的分类体系,并对其中一些代表性的检测算法进行了阐述;再次,给出了模块检测常用的数据库、评价指标和相关软件工具,并通过实验对代表性算法进行了性能对比. 最后,通过对该领域挑战性问题的分析预测了模块检测未来的研究方向,以期对相关研究提供一定的参考.  相似文献   

4.
一种蛋白质复合体模块度函数及其识别算法   总被引:1,自引:0,他引:1  
蛋白质复合体对于研究细胞活动具有重要意义.随着新的生物实验技术的不断出现,产生了大量的蛋白质相互作用网络.通过对蛋白质相互作用网络进行聚类识别蛋白质复合体是当前研究热点.然而,目前大多数蛋白质复合体识别算法的性能不够理想.为此,提出了蛋白质复合体模块度函数(PQ),并在此基础上提出了基于蛋白质复合体模块度函数的模块合并(based on protein complexes modularity function for merging modules, BMM)算法.BMM算法首先识别网络中一些稠密子图作为初始模块,然后依据PQ函数对这些初始模块进行合并,最终得到了质量较高的蛋白质复合体.将识别出的复合体分别与2种已知的蛋白质复合体数据集进行比对,结果表明BMM算法具有很好的识别性能.此外,与其他最新的识别算法相比,BMM算法的识别准确率较高.  相似文献   

5.
蛋白质相互作用网络的蜂群信息流聚类模型与算法   总被引:1,自引:0,他引:1  
蛋白质相互作用网络的聚类算法研究是充分理解分子的结构、功能及识别蛋白质的功能模块的重要方法.很多传统聚类算法对于蛋白质相互作用网络聚类效果不佳.功能流模拟算法是一种新型聚类算法,但该算法没有考虑到距离的作用效果并且需要人为地设置合并阈值,带有主观性.文中提出了一种新颖的基于蜂群优化机理的信息流聚类模型与算法.该方法中,数据预处理采用结点网络综合特征值的排序来初始化聚类中心,将蜂群算法的蜜源位置对应于其聚类中心,蜜源的收益度大小对应于模块间的相似度,采蜜蜂结点的所有邻接点按照结点网络综合特征值的降序排列,作为侦察蜂的搜索邻域.采用正确率、查全率等指标对聚类效果做出客观评价,并对算法的一些关键参数进行仿真、对比与分析.结果表明新算法不仅克服了原功能流模拟算法的缺点,且其正确率和查全率的几何平均值最高,能够有效地识别蛋白质功能模块.  相似文献   

6.
针对谱聚类融合模糊C-means(FCM)聚类的蛋白质相互作用(PPI)网络功能模块挖掘方法准确率不高、执行效率较低和易受假阳性影响的问题,提出一种基于模糊谱聚类的不确定PPI网络功能模块挖掘(FSC-FM)方法。首先,构建一个不确定PPI网络模型,使用边聚集系数给每一条蛋白质交互作用赋予一个存在概率测度,克服假阳性对实验结果的影响;第二,利用基于边聚集系数流行距离(FEC)策略改进谱聚类中的相似度计算,解决谱聚类算法对尺度参数敏感的问题,进而利用谱聚类算法对不确定PPI网络数据进行预处理,降低数据的维数,提高聚类的准确率;第三,设计基于密度的概率中心选取策略(DPCS)解决模糊C-means算法对初始聚类中心和聚类数目敏感的问题,并对预处理后的PPI数据进行FCM聚类,提高聚类的执行效率以及灵敏度;最后,采用改进的边期望稠密度(EED)对挖掘出的蛋白质功能模块进行过滤。在酵母菌DIP数据集上运行各个算法可知,FSC-FM与基于不确定图模型的检测蛋白质复合物(DCU)算法相比,F-measure值提高了27.92%,执行效率提高了27.92%;与在动态蛋白质相互作用网络中识别复合物的方法(CDUN)、演化算法(EA)、医学基因或蛋白质预测算法(MGPPA)相比也有更高的F-measure值和执行效率。实验结果表明,在不确定PPI网络中,FSC-FM适合用于功能模块的挖掘。  相似文献   

7.
基于蛋白质相互作用网络的聚类算法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
蛋白质相互作用网络是计算机科学技术的一个新研究领域。蛋白质相互作用网络中结点之间的距离度量需要通过基于网络的最短路径距离来重新定义,其计算代价高,这使得已有的基于欧几何距离的聚类算法不能直接运用到这种环境中。因此,通过蛋白质相互作用网络的特征提出了一种新的聚类算法。算法使用网络中的边和结点信息来缩减搜索空间,避免了一些不必要的距离计算。实验结果表明,算法对于真实的蛋白质相互作用网络中的结点聚类是高效的。  相似文献   

8.
针对在蛋白质相互作用网络上的关键蛋白质识别只关注拓扑特性,蛋白质相互作用数据中存在较高比例的假阳性数据以及基于复合物信息的关键蛋白质识别算法对节点的邻域信息和复合物的挖掘对关键蛋白质的识别影响效果考虑不够全面等导致的识别准确率和特异性不高的问题,提出一种基于复合物参与度和密度的关键蛋白质预测算法PEC。首先融合GO注释信息和边聚集系数构造加权PPI网络,克服假阳性对实验结果的影响;基于蛋白质相互作用的边权重,构造相似度矩阵,设计特征值间的最大本征差值来自动确定划分数目K,同时根据加权网络中的蛋白质节点度来选取K个初始聚类中心,进而利用谱聚类结合模糊C-means聚类算法实现复合物的挖掘,提高聚类的准确率,降低数据的维数;其次基于蛋白质节点的复合物参与度以及节点邻域子图密度,设计出关键节点的关键性得分。在DIP和Krogan 2个数据集上,将PEC与DC、BC、CC、SC、IC、PeC、WDC、LIDC、LBCC和UC 10种经典算法相比,实验结果表明,PEC算法能够识别出更多的关键蛋白质,且聚类结果的准确率和特异性较高。  相似文献   

9.
基于关键功能模块挖掘的蛋白质功能预测   总被引:1,自引:0,他引:1  
精确注释蛋白质功能是从分子水平理解生物体的关键.由于内在的困难和昂贵的开销,实验方法注释蛋白质功能已经很难满足日益增长的序列数据.为此,提出了许多基于蛋白质相互作用(Protein-protein interaction,PPI)网络的计算方法预测蛋白质功能.当今蛋白质功能预测的趋势是融合蛋白质相互作用网络和异构生物数据.本文提出一种基于多关系网络中关键功能模块挖掘的蛋白质功能预测算法.关键功能模块由一组紧密联系且共享生物功能的蛋白质组成,它们能与网络中的剩余部分较好地区分开来.算法通过从多关系网络的每一个简单网络中挖掘高内聚、低耦合的子图形成关键功能模块.关键功能模块中邻居蛋白质的功能用于注释待预测功能的蛋白质.每一个简单网络在蛋白质功能预测中的重要性各不相同.实验结果表明,提出的方法性能优于现有的蛋白质功能预测方法.  相似文献   

10.
蛋白质互作用(protein-protein interaction, PPI)网络是广泛存在的一类复杂生物网络,其网络拓扑特征与功能模块分析密切相关.图聚类是对复杂网络进行分析和处理的一种重要计算方法.传统的PPI网络中蛋白质复合体检测算法通常对网络图中的对象进行硬划分,而寻找网络中的重叠簇的软聚类算法已成为当前研究热点之一.现有的软聚类算法较少关注寻找网络中具有重要生物意义的小规模非稠密簇.对此,基于网络中结点邻域给出了边关联强度的度量方法,并在此基础上提出了一种基于流模拟的PPI网络中复合体检测的图聚类(flow-simulation graph clustering, F-GCL)算法,该算法可以在快速发现PPI网络中的重叠簇的同时找到小规模非稠密簇;同时,与MCODE(molecular complex detection),MCL(Markov clustering),RNSC(restricted neighborhood search clustering)和CPM(clique percolation method)算法在6个酿酒酵母PPI网络上进行比较,该算法在F-measure,Accuracy,Separation方面表现了较好的性能.  相似文献   

11.
蛋白质作用网络中模体识别技术研究   总被引:1,自引:0,他引:1  
生物网络是利用网络理论对生物系统进行建模,从而借助于网络的概念、属性和复杂网络研究的各种方法来理解生物系统的演化和行为。生物网络是生物信息学中一个崭新的研究领域,特别是蛋白质作用网络中网络模体具有很重要的生物意义。网络模体为在某个网络的多个不同部分出现的相互连接的子结构,其表达程度明显高于在随机网络中的表达。文中对模体识别技术进行了研究,系统阐述了模体识别技术的研究现状和各种技术方法,展望了模体识别技术的未来研究方向。识别大模体及将模体跟功能相结合将是该领域的发展方向。  相似文献   

12.
鉴于多标签传播算法在发现社会网络的社区结构研究上具有快速、高效的求解能力,提出融合多源蛋白质生物学知识的基于多标签传播机制的蛋白质相互作用(PPI)网络功能模块检测算法.首先,结合PPI网络功能信息和结构信息初始化节点的标签.然后,利用基因表达数据描述蛋白质间的共表达性,依据共表达性构建标签集合,从中选择标签以实现标签在节点间真实可靠的传播.最后,将具有相同标识符的节点划分到同一功能模块中,获得最终结果.实验表明文中算法不仅具有良好的时间性能,而且在检测精度上也具有一定的竞争性.  相似文献   

13.
蛋白质交互网络预测是后基因组时代生物学中很重要的研究内容。到目前为止,对蛋白质交互网络相互作用的预测都是假设相互作用是确定的。但是,蛋白质交互网络和其它的一些生物数据会因为实验检测方法的局限性而呈现出不确定性。提出了一种基于信息传播的不确定性PPI网络的链接预测算法。在每个顶点对上按其出现链接的概率定义了链接信息量,该算法将边上的链接信息量在图上以一定的概率来传播。利用标准数据集进行测试,实验结果表明,所提出的算法具有很好的准确率和良好的生物统计特性。  相似文献   

14.
蛋白质的功能常体现在生物大分子的相互作用中,识别蛋白质相互作用位点对于研究蛋白质功能发挥着重要作用.蛋白质问主要通过表面残基发生相互作用,蛋白质相互作用形成复合体时,只有部分表面残基参与了该过程.基于序列谱信息,提取序列上相邻残基的序列谱作为输入特征向量,对大小为3和7的残基信息窗(win3,win7),分别采用支持向量机(SVM)分类器对蛋白质相互作用位点进行预测、比较和分析.最终实验结果为:win3的平均正确率为69.31%,win7的平均正确率为69.68%.  相似文献   

15.
蛋白质的功能常体现在生物大分子的相互作用中,识别蛋白质相互作用位点对于研究蛋白质功能发挥着重要作用。蛋白质间主要通过表面残基发生相互作用,蛋白质相互作用形成复合体时,只有部分表面残基参与了该过程。基于序列谱信息,提取序列上相邻残基的序列谱作为输入特征向量,对大小为3和7的残基信息窗(win3,win7),分别采用支持向量机(SVM)分类器对蛋白质相互作用位点进行预测、比较和分析。最终实验结果为:win3的平均正确率为69.31%,win7的平均正确率为69.68%。  相似文献   

16.
随着可获得的大规模蛋白质相互作用数据的迅速增长,从系统水平上对细胞机制的基本组件和结构的理解成为了一种可能。如今所面临的最大挑战是如何通过分析此类复杂的相互作用数据来反映细胞组织、进程以及功能的规律。基于图理论的聚类方法是分析蛋白质相互作用数据的有效手段。本文将从蛋白质相互作用网络(PPI网络)的图模型、聚类算法、评估方法及应用几个方面描述PPI网络聚类分析的最新研究进展。最后,讨论该方向研究所面临的挑战及进一步的研究方向。  相似文献   

17.
洪海燕  刘维 《计算机科学》2016,43(Z6):413-417, 434
蛋白质间的相互作用预测问题本质上是复杂网络的链接预测问题。到目前为止,已经有很多方法用于链接预测,这些方法要么只考虑拓扑信息,要么只考虑蛋白质相互作用网络内部的交互信息,但是仅考虑一种信息来预测蛋白质的交互信息是远远不够的。因此提出了一种新方法:将蛋白质相互作用网络看作是一个有权图,根据网络中两节点的拓扑结构和属性信息,分别计算它们的拓扑相似度和属性相似度来预测它们之间是否存在链接关系。在两种相似度平衡方面,考虑基于空间映射的方法,将它们独立地映射到另一空间,并且使它们分别映射的空间尽量相近,从而使得拓扑信息、属性信息有机融合。实验结果表明,提出的算法具有较好的准确率和良好的生物统计特性。  相似文献   

18.
Proteins usually bind together to form complexes, which play an important role in cellular activities. Many graph clustering methods have been proposed to identify protein complexes by finding dense regions in protein-protein interaction networks. We present a novel framework (CPL) that detects protein complexes by propagating labels through interactions in a network, in which labels denote complex identifiers. With proper propagation in CPL, proteins in the same complex will be assigned with the same labels. CPL does not make any strong assumptions about the topological structures of the complexes, as in previous methods. Tile CPL algorithm is tested on several publicly available yeast protein-protein interaction networks and compared with several state-of-the-art methods. The results suggest that CPL performs better than the existing methods. An analysis of the functional homogeneity based on a gene ontology analysis shows that the detected complexes of CPL are highly biologically relevant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号