首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
郑磊  刘椿年  贾东 《计算机工程》2003,29(19):6-7,25
提出了一种新的约束归纳逻辑程序设计方法,并初步实现了一个自顶向下的约束归纳逻辑程序原型系统。该系统能够导出不受变量个数限制的多种形式的线性约束,得出覆盖正例而排斥负例的含约束的Hom子句程序。  相似文献   

2.
归纳逻辑程序设计综述   总被引:4,自引:1,他引:4  
归纳逻辑程序设计是由机器学习与逻辑程序设计交叉所形成的一个研究领域,是机器学习的前沿研究课题。该文首先从归纳逻辑程序设计的问题背景、类型划分和搜索程序子句三个方面介绍了归纳逻辑程序设计系统的概貌;然后结合实验室的相关研究工作,回顾了归纳逻辑程序设计研究的发展;之后介绍了归纳逻辑程序设计领域中需要深入研究的若干问题,并提出了新的解决思路;最后是总结,以引起读者对归纳逻辑程序设计领域研究的进一步关注。  相似文献   

3.
分布式并行约束归纳逻辑程序设计研究*   总被引:1,自引:0,他引:1  
CILP是关系数据挖掘的主要技术之一。为提高CILP系统的效率,提出了一种基于C3模型,元学习技术和主从式静态负载平衡策略的分布式并行CILP算法,并实现了一个基于COW机群结构的分布式并行CILP原型系统。实验表明该算法是高效的,能获得较好的负载平衡,较高的加速比和并行效率。  相似文献   

4.
李艳娟  郭茂祖 《电脑学习》2012,2(3):13-17,22
归纳逻辑程序设计是机器学习与逻辑程序设计交叉所形成的一个研究领域,克服了传统机器学习方法的两个主要限制:即知识表示的限制和背景知识利用的限制,成为机器学习的前沿研究课题。首先从归纳逻辑程序设计的产生背景、定义、应用领域及问题背景介绍了归纳逻辑程序设计系统的概貌,对归纳逻辑程序设计方法的研究现状进行了总结和分析,最后探讨了该领域的进一步的研究方向。  相似文献   

5.
归纳逻辑程序设计(inductive logic programming, ILP)是以一阶逻辑归纳理论为基础,并以一阶逻辑为表达语言的符号规则学习方法. ILP学得的模型是易于理解的一阶逻辑符号规则,而非难以解释的黑箱模型;在学习中可以相对容易地显式利用以一阶逻辑描述的领域知识;学得模型能对领域中个体间的关系进行建模,而非仅仅对个体的标记进行预测. 然而,由于潜在假设空间巨大,进行高效学习有相当的困难.综述了ILP领域的研究情况,从不同一阶逻辑归纳理论的角度对主流的ILP方法做出了梳理.还介绍了近年来ILP基于二阶诱导推理理论的扩展、基于概率的扩展和引入可微构件的扩展.最后,介绍了ILP在实际任务中的代表性应用,探讨了ILP方法目前所遇到的挑战,并对其未来发展进行了展望.  相似文献   

6.
遗传归纳逻辑程序设计的个体编码生长现象   总被引:3,自引:0,他引:3  
遗传归纳逻辑程序设计(GILP)的个体编码生长现象严重影响了算法的性能和规则的可读性.通过对变长编码的模式分析,解释了GILP的个体编码生长现象.并发现,若从初始种群开始添加长度惩罚项来解决个体编码生长问题,种群会出现退化现象.而采取在演化的初期不添加惩罚项,在种群的性状有了明显改善后再添加惩罚的策略,既可避免种群退化,又可有效解决个体编码生长问题.  相似文献   

7.
SC-PROLOG解释系统中的约束逻辑程序设计方法   总被引:1,自引:0,他引:1  
约束逻辑程序设计(CLP)方法是提高PROLOG语言效率的一种崭新方法,本文针对SC┐PROLOG解释系统的实现介绍其相应设计思想,从域变量含义入手,提出了域及约束的存储方法以及约束机制的实现算法,是对逻辑设计方法研究的一点体会  相似文献   

8.
本文介绍了面向对象技术和约束逻辑程序设计方法在人工智能中应用的基本思想,通过二者的结合使现有逻辑程序设计在逻辑的清晰性和执行的高效性上都得以提高,这样就引入了一个新的研究方向:面向对象的约束逻辑程序设计  相似文献   

9.
归纳逻辑程序设计的核心问题是如何从背景知识中优选谓词构造满足约束的归纳假设,按Occam准则,满足约束的最精简归纳假设为优,但迄今归纳逻辑程序设计中精简归纳假设构造的计算复杂性尚未解决。  相似文献   

10.
基于归纳逻辑程序设计的学习方法及其实现的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
归纳逻辑程序设计是机器学习领域中的一个新方法,它研究的是从实例和背景知识进行逻辑程序(新知识)的构造.本文介绍了归纳逻辑程序设计的基本理论和方法,并介绍了这种学习方法在专家系统中的应用情况.  相似文献   

11.
This paper demonstrates the capabilities offoidl, an inductive logic programming (ILP) system whose distinguishing characteristics are the ability to produce first-order decision lists, the use of an output completeness assumption as a substitute for negative examples, and the use originally motivated by the problem of learning to generate the past tense of English verbs; however, this paper demonstrates its superior performance on two different sets of benchmark ILP problems. Tests on the finite element mesh design problem show thatfoidl’s decision lists enable it to produce generally more accurate results than a range of methods previously applied to this problem. Tests with a selection of list-processing problems from Bratko’s introductory Prolog text demonstrate that the combination of implicit negatives and intensionality allowfoidl to learn correct programs from far fewer examples thanfoil. This research was supported by a fellowship from AT&T awarded to the first author and by the National Science Foundation under grant IRI-9310819. Mary Elaine Califf: She is currently pursuing her doctorate in Computer Science at the University of Texas at Austin where she is supported by a fellowship from AT&T. Her research interests include natural language understanding, particularly using machine learning methods to build practical natural language understanding systems such as information extraction systems, and inductive logic programming. Raymond Joseph Mooney: He is an Associate Professor of Computer Sciences at the University of Texas at Austin. He recerived his Ph.D. in Computer Science from the University of Illinois at Urbana-Champaign in 1988. His current research interests include applying machine to natural language understanding, inductive logic programming, knowledge-base and theory refinement, learning for planning, and learning for recommender systems. He serves on the editorial boards of the journalNew Generation Computing, theMachine Learning journal, theJournal of Artificial Intelligence Research, and the journalApplied Intelligence.  相似文献   

12.
Struyf  Jan  Ramon  Jan  Bruynooghe  Maurice  Verbaeten  Sofie  Blockeel  Hendrik 《Machine Learning》2004,57(3):305-333
In many applications of Inductive Logic Programming (ILP), learning occurs from a knowledge base that contains a large number of examples. Storing such a knowledge base may consume a lot of memory. Often, there is a substantial overlap of information between different examples. To reduce memory consumption, we propose a method to represent a knowledge base more compactly. We achieve this by introducing a meta-theory able to build new theories out of other (smaller) theories. In this way, the information associated with an example can be built from the information associated with one or more other examples and redundant storage of shared information is avoided. We also discuss algorithms to construct the information associated with example theories and report on a number of experiments evaluating our method in different problem domains.  相似文献   

13.
Slicing is a program analysis technique originally developed for imperative languages. It facilitates understanding of data flow and debugging.This paper discusses slicing of Constraint Logic Programs. Constraint Logic Programming (CLP) is an emerging software technology with a growing number of applications. Data flow in constraint programs is not explicit, and for this reason the concepts of slice and the slicing techniques of imperative languages are not directly applicable.This paper formulates declarative notions of slice suitable for CLP. They provide a basis for defining slicing techniques (both dynamic and static) based on variable sharing. The techniques are further extended by using groundness information.A prototype dynamic slicer of CLP programs implementing the presented ideas is briefly described together with the results of some slicing experiments.  相似文献   

14.
逻辑程序设计语言具有很强的逻辑推理能力,将逻辑程序规则与数据库耦合在一起,可以扩充原有的关系数据库完整性约束规则.本文初步探讨了用逻辑程序实现关系数据库完整性约束的实现方法,该方法可以解决语义上逻辑错误的约束.  相似文献   

15.
We suggest a formal model to represent and solve the multicast routing problem in multicast networks. To attain this, we model the network adapting it to a weighted and-or graph, where the weight on a connector corresponds to the cost of sending a packet on the network link modelled by that connector. Then, we use the Soft Constraint Logic Programming (SCLP) framework as a convenient declarative programming environment in which to specify related problems. In particular, we show how the semantics of an SCLP program computes the best tree in the corresponding and-or graph: this result can be adopted to find, from a given source node, the multicast distribution tree having minimum cost and reaching all the destination nodes of the multicast communication. The costs on the connectors can be described also as vectors (multi-dimensional costs), each component representing a different Quality of Service metric value. Therefore, the construction of the best tree may involve a set of criteria, all of which are to be optimized (multi-criteria problem), e.g. maximum global bandwidth and minimum delay that can be experienced on a single link.  相似文献   

16.
Constraint Databases represent complex data by means of formulas described by constraints (equations, inequations or Boolean combinations of both). Commercial database management systems allow the storage and efficient retrieval of classic data, but for complex data a made-to-measure solution combined with expert systems for each type of problem are necessary. Therefore, in the same way as commercial solutions of relational databases permit storing and querying classic data, we propose an extension of the Selection Operator for complex data stored, and an extension of SQL language for the case where both classic and constraint data need to be managed. This extension shields the user from unnecessary details on how the information is stored and how the queries are evaluated, thereby enlarging the capacity of expressiveness for any commercial database management system. In order to minimize the selection time, a set of strategies have been proposed, which combine the advantages of relational algebra and constraint data representation.  相似文献   

17.
To model combinatorial decision problems involving uncertainty and probability, we introduce scenario based stochastic constraint programming. Stochastic constraint programs contain both decision variables, which we can set, and stochastic variables, which follow a discrete probability distribution. We provide a semantics for stochastic constraint programs based on scenario trees. Using this semantics, we can compile stochastic constraint programs down into conventional (non-stochastic) constraint programs. This allows us to exploit the full power of existing constraint solvers. We have implemented this framework for decision making under uncertainty in stochastic OPL, a language which is based on the OPL constraint modelling language [Van Hentenryck et al., 1999]. To illustrate the potential of this framework, we model a wide range of problems in areas as diverse as portfolio diversification, agricultural planning and production/inventory management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号