首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 184 毫秒
1.
The most effective way to maximize the lifetime of a wireless sensor network (WSN) is to allocate initial energy to sensors such that they exhaust their energy at the same time. The lifetime of a WSN as well as an optimal initial energy allocation are determined by a network design. The main contribution of the paper is to show that the lifetime of a WSN can be maximized by an optimal network design. We represent the network lifetime as a function of the number mm of annuli and show that mm has significant impact on network lifetime. We prove that if the energy consumed by data transmission is proportional to dα+cdα+c, where dd is the distance of data transmission and αα and cc are some constants, then for a circular area of interest with radius RR, the optimal number of annuli that maximizes the network lifetime is m=R((α−1)/c)1/αm=R((α1)/c)1/α for an arbitrary sensor density function.  相似文献   

2.
This paper deals with the existence and search for properly edge-colored paths/trails between two, not necessarily distinct, vertices ss and tt in an edge-colored graph from an algorithmic perspective. First we show that several versions of the s−tst path/trail problem have polynomial solutions including the shortest path/trail case. We give polynomial algorithms for finding a longest properly edge-colored path/trail between ss and tt for a particular class of graphs and characterize edge-colored graphs without properly edge-colored closed trails. Next, we prove that deciding whether there exist kk pairwise vertex/edge disjoint properly edge-colored s−tst paths/trails in a cc-edge-colored graph GcGc is NP-complete even for k=2k=2 and c=Ω(n2)c=Ω(n2), where nn denotes the number of vertices in GcGc. Moreover, we prove that these problems remain NP-complete for cc-edge-colored graphs containing no properly edge-colored cycles and c=Ω(n)c=Ω(n). We obtain some approximation results for those maximization problems together with polynomial results for some particular classes of edge-colored graphs.  相似文献   

3.
Some observations on products of primitive words are discussed. By these results, alternative proof is given for the Lyndon–Schützenberger Theorem, which says that every solution of the equation ambn=ckambn=ck over Σ*Σ* is trivial.  相似文献   

4.
We study atomic routing games on networks in which players choose a path with the objective of minimizing the maximum congestion along the edges of their path. The social cost is the global maximum congestion over all edges in the network. We show that the price of stability is 1. The price of anarchy  , PoAPoA, is determined by topological properties of the network. In particular, PoA=O(?+logn)PoA=O(?+logn), where ?? is the length of the longest path in the player strategy sets, and nn is the size of the network. Further, κ−1≤PoA≤c(κ2+log2n)κ1PoAc(κ2+log2n), where κκ is the length of the longest cycle in the network, and cc is a constant.  相似文献   

5.
6.
7.
Let F(x,y)F(x,y) be a polynomial over a field KK and mm a nonnegative integer. We call a polynomial gg over KK an mm-near solution of F(x,y)F(x,y) if there exists a c∈KcK such that F(x,g)=cxmF(x,g)=cxm, and the number cc is called an mm-value of F(x,y)F(x,y) corresponding to gg. In particular, cc can be 0. Hence, by viewing F(x,y)=0F(x,y)=0 as a polynomial equation over K[x]K[x] with variable yy, every solution of the equation F(x,y)=0F(x,y)=0 in K[x]K[x] is also an mm-near solution. We provide an algorithm that gives all mm-near solutions of a given polynomial F(x,y)F(x,y) over KK, and this algorithm is polynomial time reducible to solving one variable equations over KK. We introduce approximate solutions to analyze the algorithm. We also give some interesting properties of approximate solutions.  相似文献   

8.
We study the state complexity of certain simple languages. If AA is an alphabet of kk letters, then a kk-language   is a nonempty set of words of length kk, that is, a uniform language of length kk. We show that the minimal state complexity of a kk-language is k+2k+2, and the maximal, (kk−1−1)/(k−1)+2k+1(kk11)/(k1)+2k+1. We prove constructively that, for every ii between the minimal and maximal bounds, there is a language of state complexity ii. We introduce a class of automata accepting sets of words that are permutations of AA; these languages define a complete hierarchy of complexities between k2−k+3k2k+3 and 2k+12k+1. The languages of another class of automata, based on kk-ary trees, define a complete hierarchy of complexities between 2k+12k+1 and (kk−1−1)/(k−1)+2k+1(kk11)/(k1)+2k+1. This provides new examples of uniform languages of maximal complexity.  相似文献   

9.
We consider a two-edge connected, undirected graph G=(V,E)G=(V,E), with nn nodes and mm non-negatively real weighted edges, and a single source shortest paths tree (SPT) TT of GG rooted at an arbitrary node rr. If an edge in TT is temporarily removed, it makes sense to reconnect the nodes disconnected from the root by adding a single non-tree edge, called a swap edge  , instead of rebuilding a new optimal SPT from scratch. In the past, several optimality criteria have been considered to select a best possible swap edge. In this paper we focus on the most prominent one, that is the minimization of the average distance between the root and the disconnected nodes. To this respect, we present an O(mlog2n)O(mlog2n) time and O(m)O(m) space algorithm to find a best swap edge for every edge of TT, thus improving for m=o(n2/log2n)m=o(n2/log2n) the previously known O(n2)O(n2) time and space complexity algorithm.  相似文献   

10.
The most natural and perhaps most frequently used method for testing membership of an individual tuple in a conjunctive query is based on searching trees of partial solutions, or search-trees. We investigate the question of evaluating conjunctive queries with a time-bound guarantee that is measured as a function of the size of the optimal search-tree. We provide an algorithm that, given a database DD, a conjunctive query QQ, and a tuple aa, tests whether Q(a)Q(a) holds in DD in time bounded by a polynomial in (sn)logk(sn)loglogn(sn)logk(sn)loglogn and nrnr, where nn is the size of the domain of the database, kk is the number of bound variables of the conjunctive query, ss is the size of the optimal search-tree, and rr is the maximum arity of the relations. In many cases of interest, this bound is significantly smaller than the nO(k)nO(k) bound provided by the naive search-tree method. Moreover, our algorithm has the advantage of guaranteeing the bound for any given conjunctive query. In particular, it guarantees the bound for queries that admit an equivalent form that is much easier to evaluate, even when finding such a form is an NP-hard task. Concrete examples include the conjunctive queries that can be non-trivially folded into a conjunctive query of bounded size or bounded treewidth. All our results translate to the context of constraint-satisfaction problems via the well-publicized correspondence between both frameworks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号