首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
彩色视频序列图像中的人脸跟踪方法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对彩色视频序列图像的人脸检测,提出了一种基于肤色的人脸跟踪方法。该方法首先在Hsu提出的肤色模型基础上,采样一种自肤色分割算法来提取复杂背景下人脸的肤色特征,与传统的采用固定肤色模型的检测算法相比,该方法具有更好的检测效果;然后,在人脸跟踪过程中采用Condensation滤波跟踪算法,并对算法做了两点改进,即在跟踪过程中采用基于Metropolis算法的重采样方法以及自适应的动态模型,实现了复杂背景下的人脸自由运动的跟踪,并从各种影片中截取了彩色视频序列图像进行了测试实验。实验结果表明,该方法有效地解决了复杂背景下人脸自由运动、光照变化及部分遮挡的问题,且精度较高。  相似文献   

2.
针对视频中的彩色序列图像,提出了一种人脸检测算法。该算法是一个由粗到精的检测过程。首先采用运动检测分析方法,根据多帧差分图像中运动物体边缘点的水平投影确定目标的水平位置,并结合肤色检测算法进一步确定人脸位置,然后用训练好的支持向量机进行人脸验证。实验结果表明,针对一般的彩色序列图像任意姿态人脸检测问题,该算法快速有效。  相似文献   

3.
基于多模型及SVM的单人脸跟踪系统   总被引:1,自引:1,他引:1  
针对彩色视频中的人脸检测与跟踪问题,使用运动模型和自适应肤色模型,从图像中快速提取出人脸候选区,然后利用基于先验规则和SVM的方法进行确认。对于被确认的人脸,建立一个人脸状态记录表,通过位置预测,使用三步搜索法进行人脸区域色度特征匹配跟踪。实验表明,本文提出的方法,在复杂的环境中,能实时地、精度较高地跟踪自由运动的人脸。  相似文献   

4.
一类视频序列中的人脸检测与实时跟踪算法   总被引:1,自引:0,他引:1  
提出一种新的人脸快速检测与实时跟踪算法,能够对视频序列中的人脸进行快速、准确地检测和跟踪。算法分为开始状态、目标丢失状态的人脸检测和连续状态的目标跟踪。首先预测人脸两眼之间的中心位置,得到人脸的预测位置并对预测位置处的图像进行模板匹配,快速检测出人脸准确位置。然后利用检测出的人脸修正人脸模板,并在检测出的位置、旋转度、缩放比例等条件下,对后面序列图像进行小位置、小角度的快速跟踪。实验采用了多种环境下的大量视频,结果显示该算法能够快速跟踪视频序列中的人脸并具有很高的准确性、鲁棒性。  相似文献   

5.
基于奇异值分解和支持向量机的人脸检测   总被引:3,自引:0,他引:3  
人脸检测在自动人脸鉴别工作中具有重要的意义。由于人脸图像特征的复杂性和多样性,使得人脸模式分类器的训练十分困难。本文提出了一种基于支持向量机(SVM)的人脸检测算法,使用了奇异值分解对训练样本进行特征提取,再由SVM分类器进行分类,有效的降低了训练难度,采用二阶多项式作为SVM分类器的核函数,实验结果表明,该方法是十分有效的。  相似文献   

6.
基于外观的人脸检测方法*   总被引:4,自引:0,他引:4  
系统地分析了基于外观的人脸检测方法,并对其进行了分类和评价,从特征脸方法、基于分布的方法、神经元网络、隐Markov模型和支持向量机等方面介绍了人脸检测方法的优缺点和适用领域。最后提出了人脸检测方法未来的研究方向。  相似文献   

7.
基于特征和基于图像相结合的快速人脸检测*   总被引:1,自引:1,他引:0  
为了提高人脸检测的速度,提出了一种基于特征和基于图像相结合的快速人脸检测方法.该方法对训练样本图像进行离散小波变换(DWT),使用低频逼近系数来训练支持向量机(SVM)分类器;在检测时,首先利用双眼区域的亮度关系和脸部的对称特征来快速过滤掉大量的背景区域,再利用SVM对余下的区域进行进一步的验证,以确认是否为人脸.实验结果证明了该方法的正确性和有效性.  相似文献   

8.
DCT特征与SVM分类在人脸检测中的应用   总被引:1,自引:0,他引:1  
人脸检测作为人脸识别系统的重要一环,越来越受到技术研究和商业应用的关注。针对人脸检测中时间和检测率不能很好保证的情况,提出了使用DCT变换和支持向量机的人脸检测算法。利用离散余弦变换的系数作为支持向量机的输入特征值,证明该方法能提高人脸检测的准确性,并缩短检测时间。  相似文献   

9.
人脸检测与检索   总被引:12,自引:1,他引:12  
研究了将人脸作为一种特殊的图像内容进行检索的问题;采用基于Adaboost统计学习方法的层叠分类器检测人脸,再用非线性SVM分类器验证人脸;实现了在大规模的复杂背景图片集合中高速准确的人脸定位;为了将找到的人脸规范化,借鉴直接表观模型(direct appearance model),提出了一种新的特征检测和人脸校正方法.该方法基于对大量数据的统计学习过程,具有良好的扩展性和稳定性;在此基础上.采用SVM分类器实现了人脸检索;最后,通过实验说明了整个方法的有效性.  相似文献   

10.
实时视频图像中的人脸检测与跟踪   总被引:3,自引:0,他引:3  
视频图像目标检测与跟踪是远程协作系统中感兴趣的研究课题之一。文中提出了一种协同系统中视频序列图像人脸检测及实时跟踪的方法。该方法根据用户选定的目标(如人脸)的颜色分布特点,用多幅训练样本图像建立人脸肤色模型,然后根据该模型和人脸特征对待检测的彩色图像进行分割与匹配,从而确定候选区域是否人脸。在视频图像跟踪中用此方法可实现人脸的实时检测跟踪,为了提高跟踪速度,提出了改进的基于运动预测的快速跟踪法。该方法充分利用运动连续性规律,能较好地处理多干扰目标同时出现的情形。实验表明所提出的方法执行效率高,检测跟踪正确率高.对有旋转的非正面人脸图像也有较好的适应性。  相似文献   

11.
宋杰 《计算机工程》2007,33(23):213-214
提出了一种新的基于二次规划的无参数支持向量机分类模型,克服了标准支持向量机需要选择正则化参数的缺点,而且该模型简单,易于实现。数值实验表明了该模型的可行性和有效性。  相似文献   

12.
如果一个人做了一系列连续动作,并被拍摄成一段视频,那么如何通过这段视频对动作进行分割和识别是人们要考虑的问题.为了对视频中的人的动作进行有效识别,基于半马尔可夫模型框架,提出了一个对人的动作进行识别的方法,该方法通过输入-输出空间的一组特征值来抓住与2个动作相邻的帧的特征,以及相邻的2个动作段之间的特征.为了提高算法的效率,提出了一个类似于Viterbi的算法,该算法被用来解决优化问题.不同数据集上的实验结果表明,该方法是有效的.  相似文献   

13.
跌倒是老年人常见的意外伤害事故,为了能够及时检测跌倒事件的发生,设计了一种基于三轴加速度传感器的跌倒检测装置,该装置佩戴在使用者的腰部或者腹部,用于实时检测老年人在正常活动和跌倒状态下的加速度信号,采用支持向量机(SVM)方法对加速度信号进行数据处理,判断人体是否跌倒。通过实验测试验证,该方法对跌倒行为识别具有较高的准确性和可靠性。  相似文献   

14.
提出一种基于层叠支持向量机的人脸检测算法,用于复杂背景灰度图像的人脸检测。算法首先用线性支持向量机进行粗筛选,滤去大量非人脸窗口,之后用非线性支持向量机对通过的窗口进行分类。实验对比数据表明,该方法降低了分类器的训练难度,计算复杂度较低,大大提高了检测速度。  相似文献   

15.
说话人识别是目前身份认证及人工智能领域研究的一个热点,解决说话人识别问题具有重要的理论价值和深远的实用意义.基于语音鲜明个性特征和显著的性别差异,提出了一种考虑性别差异的说话人识别方法,并采用SVM分类器进行训练和测试.先对SVM分类器分别进行性别识别训练和同性集合内个体识别的分类训练,建立起相应的支持向量集合,以此为基础,先后进行说话人的性别识别测试和个体识别测试.实验结果表明,该方法可以有效提高闭集说话人识别系统的性能.  相似文献   

16.
针对老人跌倒时的复杂运动情况,进行跌倒标注的较难实现,提出了基于Tri-training半监督算法的跌倒检测系统。本系统使用3D加速度传感器采集运动加速度数据,然后对数据进行特征提取与部分样本标注,使用Tri-training算法训练分类器,最后使用训练好的分类器进行跌倒识别。具体的数据采集传感器设计为可穿戴式设备,服务器端使用Java编写了一个服务器的程序实现对数据的分析与处理。实验结果表明:该方法使用了大量无标签数据的信息,有效提高了跌倒识别的准确率。实验结果表明:本系统能够满足老年人在日常生活中的需求,对于一些意外跌倒能够给予及时的检测与报警。  相似文献   

17.
刘斌  岳会宇  李卓  刘铁男 《控制工程》2006,13(4):355-357,380
针对油藏中油气规律分布复杂的地区,在以往油层含油判别分析的基础上,提出了一种基于支持向量机的油藏建模方法。应用已知油层的岩层厚度、泥质含量等6个参数作为训练样本的输入,油气特征作为训练样本的输出,对支持向量机进行训练,从而建立基于支持向量分类机的识别模型,并在此基础上对某油区油气水层分布规律进行了预测。结果显示,采用支持向量机判断的油气分布规律与实际试油结果完全一致,即将支持向量机用于油层油气识别是有效的。  相似文献   

18.
通过便携式步态信息采集系统,将篮球运动员直线行走、跑步、运球时的步态信息采集保存至SD卡,后期基于支持向量机(SVM)的模式识别方法对数据离线处理.对比分析篮球运动员在不同步态下的生物力学信号特征.实验结果表明:该方法能够成功分类识别不同步态,验证了该系统的实用性.  相似文献   

19.
基于支持向量机的人脸检测训练集增强   总被引:3,自引:0,他引:3       下载免费PDF全文
王瑞平  陈杰  山世光  陈熙霖  高文 《软件学报》2008,19(11):2921-2931
根据支持向量机(support vector machine,简称SVM)理论,对基于边界的分类算法(geometric approach)而言,类别边界附近的样本通常比其他样本包含有更多的分类信息.基于这一基本思路,以人脸检测问题为例,探讨了对给定训练样本集进行边界增强的问题,并为此而提出了一种基于支持向量机和改进的非线性精简集算法IRS(improved reduced set)的训练集边界样本增强算法,用以扩大训练集并改善其样本分布.其中,所谓IRS算法是指在精简集(reduced set)算法的核函数中嵌入一种新的距离度量——图像欧式距离——来改善其迭代近似性能,IRS可以有效地生成新的、位于类别边界附近的虚拟样本以增强给定训练集.为了验证算法的有效性,采用增强的样本集训练基于AdaBoost的人脸检测器,并在MIT CMU正面人脸测试库上进行了测试.实验结果表明,通过这种方法能够有效地提高最终分类器的人脸检测性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号