首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Automatic image annotation has become an important and challenging problem due to the existence of semantic gap. In this paper, we firstly extend probabilistic latent semantic analysis (PLSA) to model continuous quantity. In addition, corresponding Expectation-Maximization (EM) algorithm is derived to determine the model parameters. Furthermore, in order to deal with the data of different modalities in terms of their characteristics, we present a semantic annotation model which employs continuous PLSA and standard PLSA to model visual features and textual words respectively. The model learns the correlation between these two modalities by an asymmetric learning approach and then it can predict semantic annotation precisely for unseen images. Finally, we compare our approach with several state-of-the-art approaches on the Corel5k and Corel30k datasets. The experiment results show that our approach performs more effectively and accurately.  相似文献   

2.
This paper addresses automatic image annotation problem and its application to multi-modal image retrieval. The contribution of our work is three-fold. (1) We propose a probabilistic semantic model in which the visual features and the textual words are connected via a hidden layer which constitutes the semantic concepts to be discovered to explicitly exploit the synergy among the modalities. (2) The association of visual features and textual words is determined in a Bayesian framework such that the confidence of the association can be provided. (3) Extensive evaluation on a large-scale, visually and semantically diverse image collection crawled from Web is reported to evaluate the prototype system based on the model. In the proposed probabilistic model, a hidden concept layer which connects the visual feature and the word layer is discovered by fitting a generative model to the training image and annotation words through an Expectation-Maximization (EM) based iterative learning procedure. The evaluation of the prototype system on 17,000 images and 7736 automatically extracted annotation words from crawled Web pages for multi-modal image retrieval has indicated that the proposed semantic model and the developed Bayesian framework are superior to a state-of-the-art peer system in the literature.  相似文献   

3.
4.
Nowadays, most of the research works in the area of image retrieval try to build an image signature by considering the image as a whole. In this paper, we proposed an alternative based on the detection of some salient points in the image. For this purpose, we propose a new efficient salient point detector based on a wavelet transform. The efficiency of our detector lies in the representation of the wavelet coefficients by a zerotree data structure and by a saliency formulation that does not favor any direction. Thus, the detected salient points are located on sharp region boundaries whatever their direction. From the detected salient points, we build a color/texture signature by using jointly the well-known color correlogram extended to salient features and rotated wavelet filter responses. Experimental results conducted by adopting a global salient approach and a local salient approach show the effectiveness of the proposed scheme.  相似文献   

5.
This paper presents a novel level set method for complex image segmentation, where the local statistical analysis and global similarity measurement are both incorporated into the construction of energy functional. The intensity statistical analysis is performed on local circular regions centered in each pixel so that the local energy term is constructed in a piecewise constant way. Meanwhile, the Bhattacharyya coefficient is utilized to measure the similarity between probability distribution functions for intensities inside and outside the evolving contour. The global energy term can be formulated by minimizing the Bhattacharyya coefficient. To avoid the time-consuming re-initialization step, the penalty energy term associated with a new double-well potential is constructed to maintain the signed distance property of level set function. The experiments and comparisons with four popular models on synthetic and real images have demonstrated that our method is efficient and robust for segmenting noisy images, images with intensity inhomogeneity, texture images and multiphase images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号