首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
多标签特征选择是针对多标签数据的特征选择技术,提高多标签分类器性能的重要手段。提出一种基于流形学习的约束Laplacian分值多标签特征选择方法(Manifold-based Constraint Laplacian Score,M-CLS)。方法分别在数据特征空间和类别标签空间定义两种Laplacian分值:在特征空间利用逻辑型类别标签的相似性对邻接矩阵进行改进,定义特征空间的约束Laplacian分值;在标签空间基于流形学习将逻辑型类别标签映射为数值型,定义实值标签空间的Laplacian分值。将两种分值的乘积作为最终的特征评价指标。实验结果表明,所提方法性能优于多种多标签特征选择方法。  相似文献   

2.
研究者目前通常通过标注标签之间的相关信息研究标签之间的相关性,未考虑未标注标签与标注标签之间的关系对标签集质量的影响.受K近邻的启发,文中提出近邻标签空间的非平衡化标签补全算法(NeLC-NLS),旨在充分利用近邻空间中元素的相关性,提升近邻标签空间的质量,从而提升多标签分类性能.首先利用标签之间的信息熵衡量标签之间关系的强弱,获得基础标签置信度矩阵.然后利用提出的非平衡标签置信度矩阵计算方法,获得包含更多信息的非平衡标签置信度矩阵.继而度量样本在特征空间中的相似度,得到k个近邻标签空间样本,并利用非平衡标签置信度矩阵计算得到近邻标签空间的标签补全矩阵.最后利用极限学习机作为线性分类器进行分类.在公开的8个基准多标签数据集上的实验表明,NeLC-NLS具有一定优势,使用假设检验和稳定性分析进一步说明算法的有效性.  相似文献   

3.
传统的多标签分类算法是以二值标签预测为基础的,而二值标签由于仅能指示数据是否具有相关类别,所含语义信息较少,无法充分表示标签语义信息。为充分挖掘标签空间的语义信息,提出了一种基于非负矩阵分解和稀疏表示的多标签分类算法(MLNS)。该算法结合非负矩阵分解与稀疏表示技术,将数据的二值标签转化为实值标签,从而丰富标签语义信息并提升分类效果。首先,对标签空间进行非负矩阵分解以获得标签潜在语义空间,并将标签潜在语义空间与原始特征空间结合以形成新的特征空间;然后,对此特征空间进行稀疏编码来获得样本间的全局相似关系;最后,利用该相似关系重构二值标签向量,从而实现二值标签与实值标签的转化。在5个标准多标签数据集和5个评价指标上将所提算法与MLBGM、ML2、LIFT和MLRWKNN等算法进行对比。实验结果表明,所提MLNS在多标签分类中优于对比的多标签分类算法,在50%的案例中排名第一,在76%的案例中排名前二,在全部的案例中排名前三。  相似文献   

4.
子空间学习是特征提取领域中的一个重要研究方向,其通过一种线性或非线性的变换将原始数据映射到低维子空间中,并在该子空间中尽可能地保留原始数据的几何结构和有用信息.子空间学习的性能提升主要取决于相似性关系的衡量方式和特征嵌入的图构建手段.文中针对子空间学习中的相似性度量与图构建两大问题进行研究,提出了一种基于核保持嵌入的子空间学习算法(Kernel-preserving Embedding based Subspace Learning,KESL),该算法通过自表示技术自适应地学习数据间的相似性信息和基于核保持的构图.首先针对传统降维方法无法挖掘高维非线性数据的内部结构问题,引入核函数并最小化样本的重构误差来约束最优的表示系数,以期挖掘出有利于分类的数据结构关系.然后,针对现有基于图的子空间学习方法大都只考虑类内样本相似性信息的问题,利用学习到的相似性矩阵分别构建类内和类间图,使得在投影子空间中同类样本的核保持关系得到加强,不同类样本间的核保持关系被进一步抑制.最后,通过核保持矩阵与图嵌入的联合优化,动态地求解出最优表示下的子空间投影.在多个数据集上的实验结果表明,所提算法在分类任务中的性能优于主流的子空间学习算法.  相似文献   

5.
子空间学习是特征提取领域中的一个重要研究方向,其通过一种线性或非线性的变换将原始数据映射到低维子空间中,并在该子空间中尽可能地保留原始数据的几何结构和有用信息.子空间学习的性能提升主要取决于相似性关系的衡量方式和特征嵌入的图构建手段.文中针对子空间学习中的相似性度量与图构建两大问题进行研究,提出了一种基于核保持嵌入的子空间学习算法(Kernel-preserving Embedding based Subspace Learning,KESL),该算法通过自表示技术自适应地学习数据间的相似性信息和基于核保持的构图.首先针对传统降维方法无法挖掘高维非线性数据的内部结构问题,引入核函数并最小化样本的重构误差来约束最优的表示系数,以期挖掘出有利于分类的数据结构关系.然后,针对现有基于图的子空间学习方法大都只考虑类内样本相似性信息的问题,利用学习到的相似性矩阵分别构建类内和类间图,使得在投影子空间中同类样本的核保持关系得到加强,不同类样本间的核保持关系被进一步抑制.最后,通过核保持矩阵与图嵌入的联合优化,动态地求解出最优表示下的子空间投影.在多个数据集上的实验结果表明,所提算法在分类任务中的性能优于主流的子空间学习算法.  相似文献   

6.
张要  马盈仓  朱恒东  李恒  陈程 《计算机工程》2022,48(3):90-99+106
对于多标签特征选择算法,通常假设数据与标签间呈现某种关系,以该关系为基础并通过正则项的约束可解决多标签特征选择问题,但该关系也可能是两种或多种关系的结合。为准确描述数据与标签间的关系并去除不相关的特征和冗余特征,基于logistic回归模型与标签流形结构提出多标签特征选择算法FSML。使用logistic回归模型的损失函数学习回归系数矩阵,利用标签流形结构学习数据特征的权重矩阵,通过L2,1-范数将系数矩阵和权重矩阵进行柔性结合,约束系数矩阵与权重矩阵的稀疏性并实现多标签特征选择。在经典多标签数据集上的实验结果表明,与CMLS、SCLS等特征选择算法相比,FSML算法在汉明损失、排名损失、1-错误率、覆盖率、平均精度等5个性能评价指标上表现良好,能更准确地描述数据与标签间的关系。  相似文献   

7.
联合嵌入式多标签分类算法   总被引:1,自引:0,他引:1  
刘慧婷  冷新杨  王利利  赵鹏 《自动化学报》2019,45(10):1969-1982
现有的一些多标签分类算法,因多标签数据含有高维的特征或标签信息而变得不可行.为了解决这一问题,提出基于去噪自编码器和矩阵分解的联合嵌入多标签分类算法Deep AE-MF.该算法包括两部分:特征嵌入部分使用去噪自编码器对特征空间学习得到非线性表示,标签嵌入部分则是利用矩阵分解直接学习到标签空间对应的潜在表示与解码矩阵.Deep AE-MF将特征嵌入和标签嵌入的两个阶段进行联合,共同学习一个潜在空间用于模型预测,进而得到一个有效的多标签分类模型.为了进一步提升模型性能,在Deep AE-MF方法中对标签间的负相关信息加以利用.通过在不同数据集上进行实验证明了提出Deep AE-MF方法的有效性和鲁棒性.  相似文献   

8.
针对非负张量分解应用于图像聚类时忽略了高维数据内部几何结构的问题,在经典的张量非负Tucker分解的基础上,添加超图正则项以尽可能多地保留原始数据的内在几何结构信息,提出一种基于超图正则化非负Tucker分解模型HGNTD。通过构造超图刻画数据内部样本间的高阶关系,提高几何结构描述的准确性,针对超图正则化非负张量分解模型,基于交替非负最小二乘法,设计快速有效的超图正则化非负Tucker分解算法求解所给模型,证明算法在非负的条件下是收敛的,最终将算法应用于图像聚类。在Yale和COIL两个常用公开数据集上的实验结果表明,相对于k-means、非负矩阵分解、图正则化非负矩阵分解、非负Tucker分解和图正则化非负Tucker分解等算法,超图正则化非负Tucker分解算法聚类准确度提升了8.6%~11.4%,归一化互信息提升了2.0%~7.5%,具有更好的聚类效果。  相似文献   

9.
多标签数据广泛存在于现实世界中,多标签特征选择是多标签学习中重要的预处理步骤.基于模糊粗糙集模型,研究人员已经提出了一些多标签特征选择算法,但是这些算法大多没有关注标签之间的共现特性.为了解决这一问题,基于样本标签间的共现关系评价样本在标签集下的相似关系,利用这种关系定义了特征与标签之间的模糊互信息,并结合最大相关与最小冗余原则设计了一种多标签特征选择算法LC-FS.在5个公开数据集上进行了实验,实验结果表明了所提算法的有效性.  相似文献   

10.
线性判别分析(LDA)是一种常用的特征提取方法,其目标是提取特征后样本的类间离散度和类内离散度的比值最大,即各类样本在特征空间中有最佳的可分离性.该方法利用同一个准则将所有类的样本投影到同一个特征空间中,忽略了各类样本分布特征的差异.本文提出类依赖的线性判别方法(Class-Specific LDA,CSLDA),对每一类样本寻找最优的投影矩阵,使得投影后能够更好地把该类样本与所有其他类的样本尽可能分开,并将该方法与经验核相结合,得到经验核空间中类依赖的线性判别分析.在人工数据集和UCI数据集上的实验结果表明,在输入空间和经验核空间里均有CSLDA特征提取后的识别率高于LDA.  相似文献   

11.
Cheng  Yusheng  Song  Fan  Qian  Kun 《Applied Intelligence》2021,51(10):6997-7015

For a multi-label learning framework, each instance may belong to multiple labels simultaneously. The classification accuracy can be improved significantly by exploiting various correlations, such as label correlations, feature correlations, or the correlations between features and labels. There are few studies on how to combine the feature and label correlations, and they deal more with complete data sets. However, missing labels or other phenomena often occur because of the cost or technical limitations in the data acquisition process. A few label completion algorithms currently suitable for missing multi-label learning, ignore the noise interference of the feature space. At the same time, the threshold of the discriminant function often affects the classification results, especially those of the labels near the threshold. All these factors pose considerable difficulties in dealing with missing labels using label correlations. Therefore, we propose a missing multi-label learning algorithm with non-equilibrium based on a two-level autoencoder. First, label density is introduced to enlarge the classification margin of the label space. Then, a new supplementary label matrix is augmented from the missing label matrix with the non-equilibrium label completion method. Finally, considering feature space noise, a two-level kernel extreme learning machine autoencoder is constructed to implement the information feature and label correlation. The effectiveness of the proposed algorithm is verified by many experiments on both missing and complete label data sets. A statistical analysis of hypothesis validates our approach.

  相似文献   

12.
林梦雷  刘景华  王晨曦  林耀进 《计算机科学》2017,44(10):289-295, 317
在多标记学习中,特征选择是解决多标记数据高维性的有效手段。每个标记对样本的可分性程度不同,这可能会为多标记学习提供一定的信息。基于这一假设,提出了一种基于标记权重的多标记特征选择算法。该算法首先利用样本在整个特征空间的分类间隔对标记进行加权,然后将特征在整个标记集合下对样本的可区分性作为特征权重,以此衡量特征对标记集合的重要性。最后,根据特征权重对特征进行降序排列,从而得到一组新的特征排序。在6个多标记数据集和4个评价指标上的实验结果表明,所提算法优于一些当前流行的多标记特征选择算法。  相似文献   

13.
已有的基于模糊粗糙集的多标记特征选择算法多从单一的样本空间刻画属性区分能力,忽视属性对标记的区分能力.基于这一认识,文中同时从样本和标记两个空间出发,提出基于双空间模糊辨识关系的多标记特征选择算法.首先,基于模糊辨识关系分别从样本和标记角度定义两种多标记属性重要性度量,然后通过权重融合的方式融合两种度量,基于融合后的度量,运用前向贪心算法构建多标记特征选择算法.在5个数据集上的对比实验验证本文算法的有效性  相似文献   

14.
在多标记学习中,特征选择是处理数据高维问题和提升分类性能的一种有效手段,然而现有特征选择算法大多是基于标记分布大致平衡这一假设,鲜有考虑标记分布不平衡的问题。针对这一问题,本文提出了一种边缘标记弱化的多标记特征选择算法(Multi-label feature selection algorithm with weakening marginal labels,WML),计算不同标记下正负标记的频数比率作为该标记的权值,然后通过赋权方式弱化边缘标记,将标记空间信息融入到特征选择的过程中,得到一组更为高效的特征序列,提升标记对样本描述的精确性。在多个数据集上的实验结果表明,本文算法具有一定优势,通过稳定性分析和统计假设检验进一步证明本文算法的有效性和合理性。  相似文献   

15.
针对传统的拉普拉斯评分特征选择算法只适应单标记学习,无法直接应用于多标记学习的问题,提出一种应用于多标记任务的拉普拉斯评分特征选择算法。首先,考虑样本在整体标记空间中共同关联和共同不关联的相关性,重新构建样本相似度矩阵;然后,将特征之间的相关性及冗余性判定引入拉普拉斯评分算法中,采用前向贪心搜索策略依次评价候选特征与已选特征的联合作用能力,用于评价特征的重要性;最后,在5个不同评价指标和6个多标记数据集上实验。实验结果表明:相比基于最大依赖的多标记维数约简方法(MDDM)、基于贝叶斯分类器的多标记特征选择算法(MLNB)及基于多元互信息的多标记分类特征选择算法(PMU),所提算法不仅分类性能最优,且存在显著性优异达65%。  相似文献   

16.
gMLC: a multi-label feature selection framework for graph classification   总被引:1,自引:1,他引:0  
Graph classification has been showing critical importance in a wide variety of applications, e.g. drug activity predictions and toxicology analysis. Current research on graph classification focuses on single-label settings. However, in many applications, each graph data can be assigned with a set of multiple labels simultaneously. Extracting good features using multiple labels of the graphs becomes an important step before graph classification. In this paper, we study the problem of multi-label feature selection for graph classification and propose a novel solution, called gMLC, to efficiently search for optimal subgraph features for graph objects with multiple labels. Different from existing feature selection methods in vector spaces that assume the feature set is given, we perform multi-label feature selection for graph data in a progressive way together with the subgraph feature mining process. We derive an evaluation criterion to estimate the dependence between subgraph features and multiple labels of graphs. Then, a branch-and-bound algorithm is proposed to efficiently search for optimal subgraph features by judiciously pruning the subgraph search space using multiple labels. Empirical studies demonstrate that our feature selection approach can effectively boost multi-label graph classification performances and is more efficient by pruning the subgraph search space using multiple labels.  相似文献   

17.
Lu  Haohan  Chen  Hongmei  Li  Tianrui  Chen  Hao  Luo  Chuan 《Applied Intelligence》2022,52(10):11652-11671

The dimension of data in the domain of multi-label learning is usually high, which makes the calculation cost very high. As an important data dimension reduction technology, feature selection has attracted the attention of many researchers. And the imbalance of data labels is also one of the factors that perplex multi-label learning. To tackle these problems, we propose a new multi-label feature selection algorithm named IMRFS, which combines manifold learning and label imbalance. Firstly, in order to keep the manifold structure between samples, the Laplacian graph is used to construct the manifold regularization. In addition, the local manifold structure of each label is considered to find the correlation between labels. And the imbalance distribution of labels is also considered, which is embedded into the manifold structure of labels. Furthermore, in order to ensure the robustness and sparsity of the IMRFS method, the L2,1-norm is applied to loss function and sparse regularization term simultaneously. Then, we adopt an iterative strategy to optimize the objective function of IMRFS. Finally, comparison results on multiple datasets show the effectiveness of IMRFS method.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号