首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
A novel direct adaptive interval type-2 fuzzy neural network (FNN) controller in which linguistic fuzzy control rules can be directly incorporated into the controller is developed to synchronize chaotic systems with training data corrupted by noise or rule uncertainties involving external disturbances, in this paper. By incorporating direct adaptive interval type-2 FNN control scheme and sliding mode approach, two non-identical chaotic systems can be synchronized based on Lyapunov stability criterion. Moreover, the chattering phenomena of the control efforts can be reduced and the external disturbance on the synchronization error can be attenuated. The stability of the proposed overall adaptive control scheme will be guaranteed in the sense that all the states and signals are uniformly bounded. From the simulation example, to synchronize two non-identical Chua’s chaotic circuits, it has been shown that type-2 FNN controllers have the potential to overcome the limitations of tpe-1 FNN controllers when training data is corrupted by high levels of uncertainty.  相似文献   

2.
Ⅱ型模糊控制综述   总被引:6,自引:1,他引:5  
Ⅱ型模糊集合是传统Ⅰ型模糊集合的扩展,其特征是隶属度值本身为模糊集合.基于Ⅱ型模糊集合的Ⅱ型模糊控制器可以同时有效地处理语言和数据不确定性,在高小确定场合具有明显超过相应Ⅰ型控制器的性能表现.本文首先对Ⅱ型模糊集合及系统理论进行了概述,然后对Ⅱ型非自适应模糊控制器Ⅱ型自适应模糊控制器和Ⅱ型自组织模糊控制器的研究进展分别...  相似文献   

3.
In this paper, an interval type-2 fuzzy sliding-mode controller (IT2FSMC) is proposed for linear and nonlinear systems. The proposed IT2FSMC is a combination of the interval type-2 fuzzy logic control (IT2FLC) and the sliding-mode control (SMC) which inherits the benefits of these two methods. The objective of the controller is to allow the system to move to the sliding surface and remain in on it so as to ensure the asymptotic stability of the closed-loop system. The Lyapunov stability method is adopted to verify the stability of the interval type-2 fuzzy sliding-mode controller system. The design procedure of the IT2FSMC is explored in detail. A typical second order linear interval system with 50% parameter variations, an inverted pendulum with variation of pole characteristics, and a Duffing forced oscillation with uncertainty and disturbance are adopted to illustrate the validity of the proposed method. The simulation results show that the IT2FSMC achieves the best tracking performance in comparison with the type-1 Fuzzy logic controller (T1FLC), the IT2FLC, and the type-1 fuzzy sliding-mode controller (T1FSMC).  相似文献   

4.
This paper presents a novel learning methodology based on a hybrid algorithm for interval type-2 fuzzy logic systems. Since only the back-propagation method has been proposed in the literature for the tuning of both the antecedent and the consequent parameters of type-2 fuzzy logic systems, a hybrid learning algorithm has been developed. The hybrid method uses a recursive orthogonal least-squares method for tuning the consequent parameters and the back-propagation method for tuning the antecedent parameters. Systems were tested for three types of inputs: (a) interval singleton, (b) interval type-1 non-singleton, and (c) interval type-2 non-singleton. Experiments were carried out on the application of hybrid interval type-2 fuzzy logic systems for prediction of the scale breaker entry temperature in a real hot strip mill for three different types of coil. The results proved the feasibility of the systems developed here for scale breaker entry temperature prediction. Comparison with type-1 fuzzy logic systems shows that hybrid learning interval type-2 fuzzy logic systems provide improved performance under the conditions tested.  相似文献   

5.
An indirect approach to adaptive interval type-2 fuzzy sliding mode control is proposed for the stable synchronization of two different chaotic nonlinear systems with different initial conditions under the presence of uncertainties involving process noises and external disturbances. The indirect model-based approach to adaptation is promoted here as a more suitable strategy for the fast changes that occurs in chaotic systems. In other words, the usual direct adaptive strategies may be too slow to respond to the inherently fast changing dynamics of chaotic systems. Using Lyapunov analysis, the sliding mode approach illustrates the asymptotic convergence of synchronization error to zero as well as good robustness against external disturbances. The interval type-2 structure aims to remedy the undesirable chattering phenomenon that is common in most conventional sliding mode control applications. It also provides a more effective equivalent model in the indirect approach, which leads to improved handling of the chaotic variations and uncertainties. Two numerical pairs of chaotic systems, i.e. the Lorenz and Chen’s systems and the Rössler system and modified Chua’s circuit are considered. In particular, in comparison with its type-1 fuzzy counterpart, the control effort is reduced by an average of 26.25% and 17.4% for the synchronization of the two corresponding systems, respectively. Furthermore, the integral of squared error is also improved by an average of 27.2% and 25.33%. This is while convergence time is reduced to less than 0.5 s and 1.5 s.  相似文献   

6.
Uncertainty is an inherent part in control systems used in real world applications. The use of new methods for handling incomplete information is of fundamental importance. Type-1 fuzzy sets used in conventional fuzzy systems cannot fully handle the uncertainties present in control systems. Type-2 fuzzy sets that are used in type-2 fuzzy systems can handle such uncertainties in a better way because they provide us with more parameters and more design degrees of freedom. This paper deals with the design of control systems using type-2 fuzzy logic for minimizing the effects of uncertainty produced by the instrumentation elements, environmental noise, etc. The experimental results are divided in two classes, in the first class, simulations of a feedback control system for a non-linear plant using type-1 and type-2 fuzzy logic controllers are presented; a comparative analysis of the systems’ response in both cases was performed, with and without the presence of uncertainty. For the second class, a non-linear identification problem for time-series prediction is presented. Based on the experimental results the conclusion is that the best results are obtained using type-2 fuzzy systems.  相似文献   

7.
8.
This paper addresses the problem of an adaptive fuzzy event-triggered control (ETC) for uncertain multi-input and multi-output nonlinear systems. To reduce the communication burden of the network control systems, a novel state-dependent event-triggering condition is designed to decide when to update the controllers. By combining the backstepping and event-trigged techniques, the adaptive fuzzy ETC strategies are developed and the resulting closed-loop system is semi-global bounded. Finally, the analytical results are substantiated using simulation studies.  相似文献   

9.
This paper investigates the problem of adaptive sliding mode control for a class of interval type-2 Itô stochastic fuzzy systems, where the actuator failures may happen. The sliding function is firstly constructed, whose key feature is its dependence on the upper membership functions. And then, an adaptive scheme is proposed to estimate the effectiveness lose values of faulty actuators, and a sliding mode controller based on estimating scheme is designed such that the reachability of the specified sliding surface can be guaranteed even in the presence of actuator failures, in which the lower and upper membership functions are involved. Moreover, the stability conditions of sliding mode dynamics are derived, which involve some coupling terms of Lyapunov matrix and the sliding matrix. By introducing additional matrix variables and employing the cone complementary linearisation algorithm, the above nonlinear stability criterions are decoupled and lastly converted to a minimisation problem with linear constraints. Finally, a numerical example demonstrates the validity of the proposed method.  相似文献   

10.
Advances in type-2 fuzzy sets and systems   总被引:3,自引:0,他引:3  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号