首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 107 毫秒
1.
This paper presents a system development that extends haptic modeling to a number of key aspects in product development. Since haptic modeling has been developed based on physical laws, it is anticipated that a natural link between the virtual world and practical applications can be established based on haptic interaction. In the proposed system, a haptic device is used as the central mechanism for reverse engineering, shape modeling, real time mechanical property analysis, machining tool path planning and coordinate measuring machine (CMM) tolerance inspection path planning. With all these features in a single haptic system, it is possible to construct a three dimensional part by either haptic shape modeling or reverse engineering, then performing real-time mechanical property analysis in which the stiffness of a part can be felt and intuitively evaluated by the user, or generating collision free cutter tool path and CMM tolerance inspection path. Due to the force feed back in all of the above activities, the product development process is more intuitive, efficient and user-friendly. A prototype system has been developed to demonstrate the proposed capabilities.  相似文献   

2.
The BOAR emulation system is targeted to hardware/software (HW/SW) codevelopment of advanced embedded DSP and telecom systems. The challenge of the BOAR system is efficient customization of programmable hardware, and dedicated partitioning routine to target applications and structures, which allows quite high overall system performance. The system allows multiple configurations for communication between processors and field programmable gate arrays (FPGAs) making the BOAR system an efficient tool for real-time HW/SW coverification. The reprogrammable hardware of the emulation tool is based on four Xilinx 4000-series devices, two Texas TMS320C50 signal processors and one Motorola MC68302 microcontroller. With current devices the BOAR hardware provides approximately 40–70 kgates of logic capacity in DSP applications. The emulation capacity can be expanded by connecting several similar boards in chain. The system has also a versatile internal reprogrammable test environment for test bench development, performance evaluations and design debugging. The logic development environment is based on the Synopsys synthesis tools and an automatic design management software, which performs resource mapping and performance-driven design partitioning between FPGAs. The emulation hardware is currently connected to logic and software development environments via an RS-232C bus. The BOAR emulation system has been found a very efficient platform for real-life prototyping of different types of DSP algorithms and systems, and validating correct functionality of a VHDL macro library.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号