首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 468 毫秒
1.
Recently, mining from data streams has become an important and challenging task for many real-world applications such as credit card fraud protection and sensor networking. One popular solution is to separate stream data into chunks, learn a base classifier from each chunk, and then integrate all base classifiers for effective classification. In this paper, we propose a new dynamic classifier selection (DCS) mechanism to integrate base classifiers for effective mining from data streams. The proposed algorithm dynamically selects a single “best” classifier to classify each test instance at run time. Our scheme uses statistical information from attribute values, and uses each attribute to partition the evaluation set into disjoint subsets, followed by a procedure that evaluates the classification accuracy of each base classifier on these subsets. Given a test instance, its attribute values determine the subsets that the similar instances in the evaluation set have constructed, and the classifier with the highest classification accuracy on those subsets is selected to classify the test instance. Experimental results and comparative studies demonstrate the efficiency and efficacy of our method. Such a DCS scheme appears to be promising in mining data streams with dramatic concept drifting or with a significant amount of noise, where the base classifiers are likely conflictive or have low confidence. A preliminary version of this paper was published in the Proceedings of the 4th IEEE International Conference on Data Mining, pp 305–312, Brighton, UK Xingquan Zhu received his Ph.D. degree in Computer Science from Fudan University, Shanghai, China, in 2001. He spent four months with Microsoft Research Asia, Beijing, China, where he was working on content-based image retrieval with relevance feedback. From 2001 to 2002, he was a Postdoctoral Associate in the Department of Computer Science, Purdue University, West Lafayette, IN. He is currently a Research Assistant Professor in the Department of Computer Science, University of Vermont, Burlington, VT. His research interests include Data mining, machine learning, data quality, multimedia computing, and information retrieval. Since 2000, Dr. Zhu has published extensively, including over 40 refereed papers in various journals and conference proceedings. Xindong Wu is a Professor and the Chair of the Department of Computer Science at the University of Vermont. He holds a Ph.D. in Artificial Intelligence from the University of Edinburgh, Britain. His research interests include data mining, knowledge-based systems, and Web information exploration. He has published extensively in these areas in various journals and conferences, including IEEE TKDE, TPAMI, ACM TOIS, IJCAI, ICML, KDD, ICDM, and WWW, as well as 11 books and conference proceedings. Dr. Wu is the Editor-in-Chief of the IEEE Transactions on Knowledge and Data Engineering (by the IEEE Computer Society), the founder and current Steering Committee Chair of the IEEE International Conference on Data Mining (ICDM), an Honorary Editor-in-Chief of Knowledge and Information Systems (by Springer), and a Series Editor of the Springer Book Series on Advanced Information and Knowledge Processing (AI&KP). He is the 2004 ACM SIGKDD Service Award winner. Ying Yang received her Ph.D. in Computer Science from Monash University, Australia in 2003. Following academic appointments at the University of Vermont, USA, she currently holds a Research Fellow at Monash University, Australia. Dr. Yang is recognized for contributions in the fields of machine learning and data mining. She has published many scientific papers and book chapters on adaptive learning, proactive mining, noise cleansing and discretization. Contact her at yyang@mail.csse.monash.edu.au.  相似文献   

2.
Information service plays a key role in grid system, handles resource discovery and management process. Employing existing information service architectures suffers from poor scalability, long search response time, and large traffic overhead. In this paper, we propose a service club mechanism, called S-Club, for efficient service discovery. In S-Club, an overlay based on existing Grid Information Service (GIS) mesh network of CROWN is built, so that GISs are organized as service clubs. Each club serves for a certain type of service while each GIS may join one or more clubs. S-Club is adopted in our CROWN Grid and the performance of S-Club is evaluated by comprehensive simulations. The results show that S-Club scheme significantly improves search performance and outperforms existing approaches. Chunming Hu is a research staff in the Institute of Advanced Computing Technology at the School of Computer Science and Engineering, Beihang University, Beijing, China. He received his B.E. and M.E. in Department of Computer Science and Engineering in Beihang University. He received the Ph.D. degree in School of Computer Science and Engineering of Beihang University, Beijing, China, 2005. His research interests include peer-to-peer and grid computing; distributed systems and software architectures. Yanmin Zhu is a Ph.D. candidate in the Department of Computer Science, Hong Kong University of Science and Technology. He received his B.S. degree in computer science from Xi’an Jiaotong University, Xi’an, China, in 2002. His research interests include grid computing, peer-to-peer networking, pervasive computing and sensor networks. He is a member of the IEEE and the IEEE Computer Society. Jinpeng Huai is a Professor and Vice President of Beihang University. He serves on the Steering Committee for Advanced Computing Technology Subject, the National High-Tech Program (863) as Chief Scientist. He is a member of the Consulting Committee of the Central Government’s Information Office, and Chairman of the Expert Committee in both the National e-Government Engineering Taskforce and the National e-Government Standard office. Dr. Huai and his colleagues are leading the key projects in e-Science of the National Science Foundation of China (NSFC) and Sino-UK. He has authored over 100 papers. His research interests include middleware, peer-to-peer (P2P), grid computing, trustworthiness and security. Yunhao Liu received his B.S. degree in Automation Department from Tsinghua University, China, in 1995, and an M.A. degree in Beijing Foreign Studies University, China, in 1997, and an M.S. and a Ph.D. degree in computer science and engineering at Michigan State University in 2003 and 2004, respectively. He is now an assistant professor in the Department of Computer Science and Engineering at Hong Kong University of Science and Technology. His research interests include peer-to-peer computing, pervasive computing, distributed systems, network security, grid computing, and high-speed networking. He is a senior member of the IEEE Computer Society. Lionel M. Ni is chair professor and head of the Computer Science and Engineering Department at Hong Kong University of Science and Technology. Lionel M. Ni received the Ph.D. degree in electrical and computer engineering from Purdue University, West Lafayette, Indiana, in 1980. He was a professor of computer science and engineering at Michigan State University from 1981 to 2003, where he received the Distinguished Faculty Award in 1994. His research interests include parallel architectures, distributed systems, high-speed networks, and pervasive computing. A fellow of the IEEE and the IEEE Computer Society, he has chaired many professional conferences and has received a number of awards for authoring outstanding papers.  相似文献   

3.
Bounded Slice-line Grid (BSG) is an elegant representation of block placement, because it is very intuitionistic and has the advantage of handling various placement constraints. However, BSG has attracted little attention because its evaluation is very time-consuming. This paper proposes a simple algorithm independent of the BSG size to evaluate the BSG representation in O(nloglogn) time, where n is the number of blocks. In the algorithm, the BSG-rooms are assigned with integral coordinates firstly, and then a linear sorting algorithm is applied on the BSG-rooms where blocks are assigned to compute two block sequences, from which the block placement can be obtained in O(n log logn) time. As a consequence, the evaluation of the BSG is completed in O(nloglogn) time, where n is the number of blocks. The proposed algorithm is much faster than the previous graph-based O(n^2) algorithm. The experimental results demonstrate the efficiency of the algorithm.  相似文献   

4.
The simple least-significant-bit (LSB) substitution technique is the easiest way to embed secret data in the host image. To avoid image degradation of the simple LSB substitution technique, Wang et al. proposed a method using the substitution table to process image hiding. Later, Thien and Lin employed the modulus function to solve the same problem. In this paper, the proposed scheme combines the modulus function and the optimal substitution table to improve the quality of the stego-image. Experimental results show that our method can achieve better quality of the stego-image than Thien and Lin’s method does. The text was submitted by the authors in English. Chin-Shiang Chan received his BS degree in Computer Science in 1999 from the National Cheng Chi University, Taipei, Taiwan and the MS degree in Computer Science and Information Engineering in 2001 from the National Chung Cheng University, ChiaYi, Taiwan. He is currently a Ph.D. student in Computer Science and Information Engineering at the National Chung Cheng University, Chiayi, Taiwan. His research fields are image hiding and image compression. Chin-Chen Chang received his BS degree in applied mathematics in 1977 and his MS degree in computer and decision sciences in 1979, both from the National Tsing Hua University, Hsinchu, Taiwan. He received his Ph.D. in computer engineering in 1982 from the National Chiao Tung University, Hsinchu, Taiwan. During the academic years of 1980–1983, he was on the faculty of the Department of Computer Engineering at the National Chiao Tung University. From 1983–1989, he was on the faculty of the Institute of Applied Mathematics, National Chung Hsing University, Taichung, Taiwan. From 1989 to 2004, he has worked as a professor in the Institute of Computer Science and Information Engineering at National Chung Cheng University, Chiayi, Taiwan. Since 2005, he has worked as a professor in the Department of Information Engineering and Computer Science at Feng Chia University, Taichung, Taiwan. Dr. Chang is a Fellow of IEEE, a Fellow of IEE and a member of the Chinese Language Computer Society, the Chinese Institute of Engineers of the Republic of China, and the Phi Tau Phi Society of the Republic of China. His research interests include computer cryptography, data engineering, and image compression. Yu-Chen Hu received his Ph.D. degree in Computer Science and Information Engineering from the Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan in 1999. Dr. Hu is currently an assistant professor in the Department of Computer Science and Information Engineering, Providence University, Sha-Lu, Taiwan. He is a member of the SPIE society and a member of the IEEE society. He is also a member of the Phi Tau Phi Society of the Republic of China. His research interests include image and data compression, information hiding, and image processing.  相似文献   

5.
It is likely that customers issue requests based on out-of-date information in e-commerce application systems. Hence, the transaction failure rates would increase greatly. In this paper, we present a preference update model to address this problem. A preference update is an extended SQL update statement where a user can request the desired number of target data items by specifying multiple preferences. Moreover, the preference update allows easy extraction of criteria from a set of concurrent requests and, hence, optimal decisions for the data assignments can be made. We propose a group evaluation strategy for preference update processing in a multidatabase environment. The experimental results show that the group evaluation can effectively increase the customer satisfaction level with acceptable cost. Peng Li is the Chief Software Architect of didiom LLC. Before that, he was a visiting assistant professor of computer science department in Western Kentucky University. He received his Ph.D. degree of computer science from the University of Texas at Dallas. He also holds a B.Sc. and M.S. in Computer Science from the Renmin University of China. His research interests include database systems, database security, transaction processing, distributed and Internet computer and E-commerce. Manghui Tu received a Bachelor degree of Science from Wuhan University, P.R. China in 1996, and a Master Degree in Computer Science from the University of Texas at Dallas 2001. He is currently working toward the PhD degree in the Department of Computer Science at the University of Texas at Dallas. Mr. Tu’s research interests include distributed systems, grid computing, information security, mobile computing, and scientific computing. His PhD research work focus on the data management in secure and high performance data grid. He is a student member of the IEEE. I-Ling Yen received her BS degree from Tsing-Hua University, Taiwan, and her MS and PhD degrees in Computer Science from the University of Houston. She is currently an Associate Professor of Computer Science at the University of Texas at Dallas. Dr. Yen’s research interests include fault-tolerant computing, security systems and algorithms, distributed systems, Internet technologies, E-commerce, and self-stabilizing systems. She had published over 100 technical papers in these research areas and received many research awards from NSF, DOD, NASA, and several industry companies. She has served as Program Committee member for many conferences and Program Chair/Co-Chair for the IEEE Symposium on Application-Specific Software and System Engineering & Technology, IEEE High Assurance Systems Engineering Symposium, IEEE International Computer Software and Applications Conference, and IEEE International Symposium on Autonomous Decentralized Systems. She is a member of the IEEE. Zhonghang Xia received the B.S. degree in applied mathematics from Dalian University of Technology in 1990, the M.S. degree in Operations Research from Qufu Normal University in 1993, and the Ph.D. degree in computer science from the University of Texas at Dallas in 2004. He is now an assistant professor in the Department of Computer Science, Western Kentucky University, Bowling Green, KY. His research interests are in the area of multimedia computing and networking, distributed systems, and data mining.  相似文献   

6.
Advances in wireless and mobile computing environments allow a mobile user to access a wide range of applications. For example, mobile users may want to retrieve data about unfamiliar places or local life styles related to their location. These queries are called location-dependent queries. Furthermore, a mobile user may be interested in getting the query results repeatedly, which is called location-dependent continuous querying. This continuous query emanating from a mobile user may retrieve information from a single-zone (single-ZQ) or from multiple neighbouring zones (multiple-ZQ). We consider the problem of handling location-dependent continuous queries with the main emphasis on reducing communication costs and making sure that the user gets correct current-query result. The key contributions of this paper include: (1) Proposing a hierarchical database framework (tree architecture and supporting continuous query algorithm) for handling location-dependent continuous queries. (2) Analysing the flexibility of this framework for handling queries related to single-ZQ or multiple-ZQ and propose intelligent selective placement of location-dependent databases. (3) Proposing an intelligent selective replication algorithm to facilitate time- and space-efficient processing of location-dependent continuous queries retrieving single-ZQ information. (4) Demonstrating, using simulation, the significance of our intelligent selective placement and selective replication model in terms of communication cost and storage constraints, considering various types of queries. Manish Gupta received his B.E. degree in Electrical Engineering from Govindram Sakseria Institute of Technology & Sciences, India, in 1997 and his M.S. degree in Computer Science from University of Texas at Dallas in 2002. He is currently working toward his Ph.D. degree in the Department of Computer Science at University of Texas at Dallas. His current research focuses on AI-based software synthesis and testing. His other research interests include mobile computing, aspect-oriented programming and model checking. Manghui Tu received a Bachelor degree of Science from Wuhan University, P.R. China, in 1996, and a Master's Degree in Computer Science from the University of Texas at Dallas 2001. He is currently working toward the Ph.D. degree in the Department of Computer Science at the University of Texas at Dallas. Mr. Tu's research interests include distributed systems, wireless communications, mobile computing, and reliability and performance analysis. His Ph.D. research work focuses on the dependent and secure data replication and placement issues in network-centric systems. Latifur R. Khan has been an Assistant Professor of Computer Science department at University of Texas at Dallas since September 2000. He received his Ph.D. and M.S. degrees in Computer Science from University of Southern California (USC) in August 2000 and December 1996, respectively. He obtained his B.Sc. degree in Computer Science and Engineering from Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, in November of 1993. Professor Khan is currently supported by grants from the National Science Foundation (NSF), Texas Instruments, Alcatel, USA, and has been awarded the Sun Equipment Grant. Dr. Khan has more than 50 articles, book chapters and conference papers focusing in the areas of database systems, multimedia information management and data mining in bio-informatics and intrusion detection. Professor Khan has also served as a referee for database journals, conferences (e.g. IEEE TKDE, KAIS, ADL, VLDB) and he is currently serving as a program committee member for the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD2005), ACM 14th Conference on Information and Knowledge Management (CIKM 2005), International Conference on Database and Expert Systems Applications DEXA 2005 and International Conference on Cooperative Information Systems (CoopIS 2005), and is program chair of ACM SIGKDD International Workshop on Multimedia Data Mining, 2004. Farokh Bastani received the B.Tech. degree in Electrical Engineering from the Indian Institute of Technology, Bombay, and the M.S. and Ph.D. degrees in Computer Science from the University of California, Berkeley. He is currently a Professor of Computer Science at the University of Texas at Dallas. Dr. Bastani's research interests include various aspects of the ultrahigh dependable systems, especially automated software synthesis and testing, embedded real-time process-control and telecommunications systems and high-assurance systems engineering. Dr. Bastani was the Editor-in-Chief of the IEEE Transactions on Knowledge and Data Engineering (IEEE-TKDE). He is currently an emeritus EIC of IEEE-TKDE and is on the editorial board of the International Journal of Artificial Intelligence Tools, the International Journal of Knowledge and Information Systems and the Springer-Verlag series on Knowledge and Information Management. He was the program cochair of the 1997 IEEE Symposium on Reliable Distributed Systems, 1998 IEEE International Symposium on Software Reliability Engineering, 1999 IEEE Knowledge and Data Engineering Workshop, 1999 International Symposium on Autonomous Decentralised Systems, and the program chair of the 1995 IEEE International Conference on Tools with Artificial Intelligence. He has been on the program and steering committees of several conferences and workshops and on the editorial boards of the IEEE Transactions on Software Engineering, IEEE Transactions on Knowledge and Data Engineering and the Oxford University Press High Integrity Systems Journal. I-Ling Yen received her B.S. degree from Tsing-Hua University, Taiwan, and her M.S. and Ph.D. degrees in Computer Science from the University of Houston. She is currently an Associate Professor of Computer Science at University of Texas at Dallas. Dr. Yen's research interests include fault-tolerant computing, security systems and algorithms, distributed systems, Internet technologies, E-commerce and self-stabilising systems. She has published over 100 technical papers in these research areas and received many research awards from NSF, DOD, NASA and several industry companies. She has served as Program Committee member for many conferences and Program Chair/Cochair for the IEEE Symposium on Application-Specific Software and System Engineering & Technology, IEEE High Assurance Systems Engineering Symposium, IEEE International Computer Software and Applications Conference, and IEEE International Symposium on Autonomous Decentralized Systems. She has also served as a guest editor for a theme issue of IEEE Computer devoted to high-assurance systems.  相似文献   

7.
Mining frequent patterns with a frequent pattern tree (FP-tree in short) avoids costly candidate generation and repeatedly occurrence frequency checking against the support threshold. It therefore achieves much better performance and efficiency than Apriori-like algorithms. However, the database still needs to be scanned twice to get the FP-tree. This can be very time-consuming when new data is added to an existing database because two scans may be needed for not only the new data but also the existing data. In this research we propose a new data structure, the pattern tree (P-tree in short), and a new technique, which can get the P-tree through only one scan of the database and can obtain the corresponding FP-tree with a specified support threshold. Updating a P-tree with new data needs one scan of the new data only, and the existing data does not need to be re-scanned. Our experiments show that the P-tree method outperforms the FP-tree method by a factor up to an order of magnitude in large datasets. A preliminary version of this paper has been published in theProceedings of the 2002 IEEE International Conference on Data Mining (ICDM ’02), 629–632. Hao Huang: He is pursuing his Ph.D. degree in the Department of Computer Science at the University of Virginia. His research interests are Gird Computing, Data Mining and their applications in Bioinformatics. He received his M.S. in Computer Science from Colorado School of Mines in 2001. Xindong Wu, Ph.D.: He is Professor and Chair of the Department of Computer Science at the University of Vermont, USA. He holds a Ph.D. in Artificial Intelligence from the University of Edinburgh, Britain. His research interests include data mining, knowledge-based systems, and Web information exploration. He has published extensively in these areas in various journals and conferences, including IEEE TKDE, TPAMI, ACM TOIS, IJCAI, AAAI, ICML, KDD, ICDM, and WWW. Dr. Wu is the Executive Editor (January 1, 1999-December 31, 2004) and an Honorary Editor-in-Chief (starting January 1, 2005) of Knowledge and Information Systems (a peer-reviewed archival journal published by Springer), the founder and current Steering Committee Chair of the IEEE International Conference on Data Mining (ICDM), a Series Editor of the Springer Book Series on Advanced Information and Knowledge Processing (AI&KP), and the Chair of the IEEE Computer Society Technical Committee on Computational Intelligence (TCCI). He served as an Associate Editor for the IEEE Transactions on Knowledge and Data Engineering (TKDE) between January 1, 2000 and December 31, 2003, and is the Editor-in-Chief of TKDE since January 1, 2005. He is the winner of the 2004 ACM SIGKDD Service Award. Richard Relue, Ph.D.: He received his Ph.D. in Computer Science from the Colorado School of Mines in 2003. His research interests include association rules in data mining, neural networks for automated classification, and artificial intelligence for robot navigation. He has been an Information Technology consultant since 1992, working with Ball Aerospace and Technology, Rational Software, Natural Fuels Corporation, and Western Interstate Commission for Higher Education (WICHE).  相似文献   

8.
The pairwise attribute noise detection algorithm   总被引:1,自引:3,他引:1  
Analyzing the quality of data prior to constructing data mining models is emerging as an important issue. Algorithms for identifying noise in a given data set can provide a good measure of data quality. Considerable attention has been devoted to detecting class noise or labeling errors. In contrast, limited research work has been devoted to detecting instances with attribute noise, in part due to the difficulty of the problem. We present a novel approach for detecting instances with attribute noise and demonstrate its usefulness with case studies using two different real-world software measurement data sets. Our approach, called Pairwise Attribute Noise Detection Algorithm (PANDA), is compared with a nearest neighbor, distance-based outlier detection technique (denoted DM) investigated in related literature. Since what constitutes noise is domain specific, our case studies uses a software engineering expert to inspect the instances identified by the two approaches to determine whether they actually contain noise. It is shown that PANDA provides better noise detection performance than the DM algorithm. Jason Van Hulse is a Ph.D. candidate in the Department of Computer Science and Engineering at Florida Atlantic University. His research interests include data mining and knowledge discovery, machine learning, computational intelligence and statistics. He is a student member of the IEEE and IEEE Computer Society. He received the M.A. degree in mathematics from Stony Brook University in 2000, and is currently Director, Decision Science at First Data Corporation. Taghi M. Khoshgoftaar is a professor at the Department of Computer Science and Engineering, Florida Atlantic University, and the director of the Empirical Software Engineering and Data Mining and Machine Learning Laboratories. His research interests are in software engineering, software metrics, software reliability and quality engineering, computational intelligence, computer performance evaluation, data mining, machine learning, and statistical modeling. He has published more than 300 refereed papers in these subjects. He has been a principal investigator and project leader in a number of projects with industry, government, and other research-sponsoring agencies. He is a member of the IEEE, the IEEE Computer Society, and IEEE Reliability Society. He served as the program chair and general chair of the IEEE International Conference on Tools with Artificial Intelligence in 2004 and 2005, respectively. Also, he has served on technical program committees of various international conferences, symposia, and workshops. He has served as North American editor of the Software Quality Journal, and is on the editorial boards of the journals Empirical Software Engineering, Software Quality, and Fuzzy Systems. Haiying Huang received the M.S. degree in computer engineeringfrom Florida Atlantic University, Boca Raton, Florida, USA, in 2002. She is currently a Ph.D. candidate in the Department of Computer Science and Engineering at Florida Atlantic University. Her research interests include software engineering, computational intelligence, data mining, software measurement, software reliability, and quality engineering.  相似文献   

9.
Grammar-based parsing is a prevalent method for natural language understanding(NLU)and has been introduced into dialogue systems for spoken language processing (SLP).A robust parsing scheme is proposed in this paper to overcome the notorious phenomena,such as garbage,ellipsis,word disordering,fragment ,and ill-form,which frequently occur in splien utterances,Keyword categories are used as terminal symbols,and the definition of grammar is extended by introducing three new rule types,by-passing,up-messing and overcrossing,in addition to the general rules called up-tying in this paper,and the use of semantic items simplifies the semantics extraction.The corresponding parser marionette,which is essentially a partial chart parser,is enhanced to parse the semantic grammar.The robust parsing scheme integrating the above methods has been adopted in an air traveling information service system called EasyFlight,and has achieved a high performance when used for parsing spontaneous speeches.  相似文献   

10.
An elementary formal system (EFS) is a logic program consisting of definite clauses whose arguments have patterns instead of first-order terms. We investigate EFSs for polynomial-time PAC-learnability. A definite clause of an EFS is hereditary if every pattern in the body is a subword of a pattern in the head. With this new notion, we show that H-EFS(m, k, t, r) is polynomial-time learnable, which is the class of languages definable by EFSs consisting of at mostm hereditary definite clauses with predicate symbols of arity at mostr, wherek andt bound the number of variable occurrences in the head and the number of atoms in the body, respectively. The class defined by all finite unions of EFSs in H-EFS(m, k, t, r) is also polynomial-time learnable. We also show an interesting series ofNC-learnable classes of EFSs. As hardness results, the class of regular pattern languages is shown not polynomial-time learnable unlessRP=NP. Furthermore, the related problem of deciding whether there is a common subsequence which is consistent with given positive and negative examples is shownNP-complete. Satoru Miyano, Dr. Sci.: He is a Professor in Human Genome Center at the University of Tokyo. He obtained B.S. in 1977, M.S. in 1979, and Dr. Sci. degree all in Mathematics from Kyushu University. His current interests include bioinformatics, discovery science, computational complexity, computational learning. He has been organizing Genome Informatics Workshop Series since 1996 and has served for the chair/member of the program committee of many conferences in the area of Computer Science and Bioinformatics. He is on the Editorial Board of Theoretical Computer Science and the Chief Editor of Genome Informatics Series. Ayumi Shinohara, Dr. Sci.: He is an Associate Professor in the Department of Informatics at Kyushu University. He obtained B.S. in 1988 in Mathematics, M.S. in 1990 in Information Systems, and Dr. Sci. degree in 1994 all from Kyushu University. His current interests include discovery science, bioinformatics, and pattern matching algorithms. Takeshi Shinohara, Dr. Sci.: He is a Professor in the Department of Artificial Intelligence at Kyushu Institute of Technology. He obtained his B.S. in Mathematics from Kyoto University in 1980, and his Dr. Sci. degree from Kyushu University in 1986. His research interests are in Computational/Algorithmic Learning Theory, Information Retrieval, and Approximate Retrieval of Multimedia Data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号