首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 234 毫秒

1.  基于类别相似性的增量协同过滤推荐算法  
   汤显  郭景峰  高英飞《计算机研究与发展》,2006年第43卷第Z3期
   协同过滤技术被成功地应用于个性化推荐系统中.随着电子商务系统用户数目和商品数目的日益增加,整个项目空间上用户评分数据极端稀疏,传统的相似性度量方法没有考虑项目所属类别对项目相似性的影响,因而计算结果不够准确.在引入项目评分预测思想的基础上,考虑到数据稀疏性和项目所属分类对项目相似性的影响,采用修正的条件概率方法计算项目相似性;在计算用户初步预测评分和最终预测评分阶段,采用新的预测方法进行预测;针对系统性能随着用户和资源的增多而不断下降的问题,提出一种优化的增量协同过滤推荐算法.实验表明,该算法可以有效地解决用户评分数据极端稀疏情况下传统相似性度量方法存在的问题,显著提高推荐系统的推荐质量.    

2.  使用群体兴趣偏好度的协同过滤推荐  
   刘旭东  陈德人  钟苏丽《计算机工程与应用》,2010年第46卷第34期
   推荐系统是电子商务系统中最重要的技术之一,用户相似性度量方法是影响推荐算法准确率高低的关键因素。针对用户评分数据极端稀疏情况下传统相似性度量方法的不足,提出了一种基于群体兴趣偏好度的协同过滤推荐算法,根据群体兴趣偏好度来预测用户对未评分项目的评分,在此基础上再采用传统的相似性度量方法计算目标用户的最近邻居。实验结果表明,该算法可以有效解决用户评分数据极端稀疏情况下传统相似性度量方法存在的问题,显著提高推荐系统的推荐质量。    

3.  非线性组合的协同过滤推荐算法  
   李国  张智斌  刘芳先  姜波  姚文伟《计算机应用》,2011年第31卷第11期
   协同过滤是目前最流行的个性化推荐技术,但现有算法局限于用户项目评分矩阵,存在稀疏性、冷开始问题,邻居相似性只考虑用户共同评分项目,忽略项目属性、用户特征相关性;同等对待用户不同时间的兴趣偏好,缺乏实时性。针对这些问题,提出一种非线性组合的协同过滤算法,改进基于项目属性、用户特征的邻居相似性计算方法,获得更加准确的最近邻居集;初始预测评分填充矩阵,以增强其稠密性;最终预测评分增加时间权限,使用户最新兴趣权重最大。实验表明,该算法通过有效降低稀疏性、冷开始和实现实时推荐,提高了预测精度。    

4.  基于资源的协作过滤推荐算法研究  
   纪良浩  王国胤《计算机工程与应用》,2008年第44卷第8期
   协作过滤是当今应用最为普遍的个性化推荐算法,然而数据的稀疏性和算法的可扩展性一直是协作过滤算法所面临的两大问题。提出了一种新的推荐算法——基于资源的协作过滤算法。该算法在对资源项目依内容划分的基础上,将用户—项目评分矩阵转换为用户—资源类别评分矩阵,然后对用户聚类,在目标用户所在的簇中寻找其最近邻居并产生推荐。实验表明,该算法不仅降低了数据的稀疏性和维度,缩小了目标用户最近邻的查找范围,算法的扩展性得到了有效改善,而且提高了最近邻的准确度,推荐精度较以往传统算法有明显提高。    

5.  基于项目属性的用户聚类协同过滤推荐算法  被引次数:1
   黄国言  李有超  高建培  常旭亮《计算机工程与设计》,2010年第31卷第5期
   协同过滤推荐算法是个性化推荐服务系统的关键技术,由于项目空间上用户评分数据的极端稀疏性,传统推荐系统中的用户相似度量算法开销较大并且无法保证项目推荐精度.通过对共同感兴趣的项目属性的相似用户进行聚类,构建了不同项目评价的用户相似性,设计了一种优化的协同过滤推荐算法.实验结果表明,该算法能够有效避免由于数据稀疏性带来的弊端,提高了系统的推荐质量.    

6.  基于增量学习的混合推荐算法  
   任磊《计算机应用》,2010年第30卷第5期
   推荐系统是自适应信息系统中的个性化服务模块,可以根据目标用户的信息需求提供个性化的信息服务。针对传统协作过滤算法存在的用户兴趣描述粒度过大问题,以及稀疏评分矩阵造成相似度计算不准确的问题,提出了一种基于增量学习的混合推荐算法WHHR,该算法通过Widrow-Hoff增量学习构建基于内容的用户模型,并结合协作过滤推荐机制实现评分预测。实验验证了WHHR算法在收敛速度和推荐准确性方面较类似推荐算法有较大提高。    

7.  综合用户特征和项目属性的协作过滤推荐算法  
   孙龙菲  黄梦醒《计算机应用研究》,2014年第31卷第2期
   通过分析传统协作过滤推荐算法面临的数据集稀疏性问题及当前解决方法的优缺点, 在基于项目的协作过滤推荐算法的基础上, 提出了一种综合用户特征和项目属性的协作过滤推荐算法。通过分析不同特征的用户对项目的各种属性的兴趣度, 综合已评分的项目属性预测未评分项目, 降低数据集的稀疏性, 提高项目相似度计算的准确性。在MovieLens数据集上的实验结果表明, 在数据极端稀疏的情况下, 能够有效地降低数据集稀疏性, 并在一定程度上缓解了协作过滤推荐算法中的冷启动问题, 提高了推荐算法的预测准确度。    

8.  基于项目之间相似性的兴趣点推荐方法*  
   邹永贵  望靖  刘兆宏  夏英《计算机应用研究》,2012年第29卷第1期
   针对评分数据稀疏的情况下传统相似性计算的不足,提出了一种基于项目之间相似性的协同过滤算法。该算法结合用户对项目的评分和项目之间的兴趣度进行项目之间的相似性计算,在一定程度上减小了评分数据稀疏的负面影响。实验结果表明,该算法在评分数据稀疏的情况下,能使推荐系统的推荐质量明显提高。    

9.  基于选择性预测策略的协同过滤推荐算法  
   刘旭东  崔蕾  陈德人《武汉理工大学学报(信息与管理工程版)》,2014年第3期
   针对传统协同过滤推荐算法在用户评分数据极端稀疏情况下无法取得令人满意的推荐质量问题,结合User-based 和Item-based 协同过滤算法思想,提出了一种基于选择性预测策略的协同过滤推荐算法,算法利用高相似度阈值来计算用户相似性和项目相似性,并通过形成用户最近邻居集和项目最近邻居集来预测填充评分矩阵。基于Movielens数据集的实验表明,改进的算法有效改善了传统协同过滤推荐算法的数据稀疏性和扩展性问题,明显提高了系统的推荐质量。    

10.  基于近邻关系的个性化推荐算法研究  
   李慧  胡云  李存华  王霞《计算机工程与应用》,2012年第48卷第36期
   协同过滤是目前电子商务推荐系统中广泛应用的最成功的推荐技术,但面临严峻的用户评分数据稀疏性和推荐实时性挑战。针对协同过滤中的数据稀疏问题,提出了一种基于最近邻的个性化推荐算法。通过维数简化技术对评分矩阵进行优化,降低数据稀疏性;采用一种新颖的相似性度量方法计算目标用户的最近邻居,产生推荐预测。实验结果表明,该算法有效地解决了数据稀疏,提高了推荐系统的推荐质量。    

11.  基于人口统计学的改进聚类模型协同过滤算法  
   王媛媛  李翔《计算机科学》,2017年第44卷第3期
   针对传统基于用户的协同过滤推荐算法在大数据环境下存在评分高维稀疏性、推荐精度低的问题,提出一种基于人口统计学数据与改进聚类模型相结合的协同过滤推荐算法,以提高推荐系统精度和泛化能力。该方法首先通过用户人口统计学数据属性,结合用户-项目评分矩阵计算各个用户间的相似度;然后对用户、项目进行分层近邻传播聚类,根据用户对项目的评分数据计算用户或项目之间的相似性,产生目标用户或项目的兴趣近邻;最后根据兴趣最近邻进行推荐。对Epinions,MovieLents等数据集进行仿真实验,仿真的结果表明, 与传统的协同过滤算法相比, 提出的算法提高了推荐精度,为传统的协同过滤推荐算法提供了参考。    

12.  基于动态k近邻的SlopeOne协同过滤推荐算法  
   孙丽梅  李晶皎  孙焕良《计算机科学与探索》,2011年第5卷第9期
   协同过滤是个性化推荐系统中的常用技术, 数据稀疏性是影响协同过滤算法预测精度的主要因素。SlopeOne算法利用线性回归模型解决数据稀疏性问题。基于用户相似度的k近邻方法可以优化参与预测的用户评分数据的质量。在SlopeOne算法的基础上, 提出了一种动态k近邻和SlopeOne相结合的算法。首先根据用户之间相似度的具体情况动态地为每个用户选择不同数目的近邻用户, 然后利用近邻用户的评分数据生成项目之间的平均偏差, 最后利用线性回归模型进行预测。在MovieLens数据集上的实验结果表明, 改进算法在预测精度上比原SlopeOne算法有所提高, 能适应数据稀疏度更低的推荐系统, 并且与其他协同过滤算法相比, 推荐精度也具有明显优势。    

13.  综合项目评分和属性的个性化推荐算法  
   陈志敏  姜艺《微电子学与计算机》,2011年第28卷第9期
   针对传统协同过滤算法存在的数据稀疏性和冷启动问题,提出了一种综合项目评分和属性的个性化推荐算法.该算法在衡量项目相似性时,同时考虑用户评分和项目属性特征,并根据评分数据的实际稀疏情况动态调整两者的影响权重;预测评分时,利用用户对项目属性的偏好度来衡量其对未评分邻居项的喜好程度,并产生最终推荐.基于MovieLens数据集进行的实验结果表明,该算法使得最近邻的确定更加准确,系统推荐质量明显改善.    

14.  基于项目评分预测的协同过滤推荐算法  被引次数:138
   邓爱林  朱扬勇  施伯乐《软件学报》,2003年第14卷第9期
   推荐系统是电子商务系统中最重要的技术之一.随着电子商务系统用户数目和商品数目的日益增加,在整个商品空间上用户评分数据极端稀疏,传统的相似性度量方法均存在各自的弊端,导致推荐系统的推荐质量急剧下降.针对用户评分数据极端稀疏情况下传统相似性度量方法的不足,提出了一种基于项目评分预测的协同过滤推荐算法,根据项目之间的相似性初步预测用户对未评分项目的评分,在此基础上,采用一种新颖的相似性度量方法计算目标用户的最近邻居.实验结果表明,该算法可以有效地解决用户评分数据极端稀疏情况下传统相似性度量方法存在的问题,显著地提高推荐系统的推荐质量.    

15.  一种基于Sigmoid函数的改进协同过滤推荐算法  
   方耀宁  郭云飞  扈红超  兰巨龙《计算机应用研究》,2013年第30卷第6期
   随着电子商务和社交网络的蓬勃发展, 推荐系统逐渐成为数据挖掘领域的重要研究方向。推荐系统能够从海量信息中定位用户兴趣点, 提供个性化服务。协同过滤算法能够有效分析用户偏好, 提供合适的推荐服务。针对评分矩阵稀疏时传统协同过滤算法性能很差的问题, 提出一种基于Sigmoid函数的改进推荐系统算法。利用Sigmoid函数对不同项目进行建模, 得到项目的平均受欢迎程度; 利用Sigmoid函数对不同用户进行建模, 将评分映射为用户对项目的喜好程度; 根据用户对项目喜好程度应该与项目平均受欢迎程度贴近的原则进行评分预测。在两组真实数据集合上的实验结果表明, 该算法较好地解决了数据稀疏性问题, 能够有效提高传统算法的预测准确性。    

16.  基于项目兴趣度的协同过滤新算法  
   孙光明    《计算机应用研究》,2013年第30卷第12期
   针对评分数据稀疏和单一评分相似性计算不准确导致推荐质量不高的问题, 提出一种基于项目兴趣度的协同过滤新算法。该算法先预测未评分项的值, 在此基础上基于项目的分类、评分值及次数引入项目—项目类别兴趣度特征向量计算同组项目的相似性, 提高了项目间相似性计算的准确度和推荐质量, 避免了大量无用计算, 提高了算法的效率。实验结果表明, 该算法对目标项目预测评分的准确性、推荐质量及效率更高。    

17.  一种属性和评分的协同过滤混合推荐算法  
   李克潮  蓝冬梅《计算机技术与发展》,2013年第23卷第7期
   传统协同过滤推荐算法仅仅根据稀疏的评分矩阵向用户推荐,存在推荐质量不高的问题.提出了一种属性和评分的协同过滤混合推荐算法.该算法由项目的类别属性计算项目之间基于属性的相似性,考虑到用户兴趣随时间的变化,构建评分时间权重的指数函数,并应用到项目之间的Pearson相关相似性中.通过权重因子加权项目之间基于属性的相似性和项目之间的Pearson相关相似性,然后计算基于项目属性的评分预测.描绘职业分类树,构建职业相似性模型,并与性别加权结合产生用户综合属性的相似性,得到基于用户属性的评分预测.最后,综合两者计算混合评分预测.在Movielens实验数据集下,实验结果表明提出的算法具有较好的平均绝对误差.    

18.  一种属性和评分的协同过滤混合推荐算法  
   李克潮  蓝冬梅《微机发展》,2013年第7期
   传统协同过滤推荐算法仅仅根据稀疏的评分矩阵向用户推荐,存在推荐质量不高的问题。提出了一种属性和评分的协同过滤混合推荐算法。该算法由项目的类别属性计算项目之间基于属性的相似性,考虑到用户兴趣随时间的变化,构建评分时间权重的指数函数,并应用到项目之间的Pearson相关相似性中。通过权重因子加权项目之间基于属性的相似性和项目之间的Pearson相关相似性,然后计算基于项目属性的评分预测。描绘职业分类树,构建职业相似性模型,并与性别加权结合产生用户综合属性的相似性,得到基于用户属性的评分预测。最后,综合两者计算混合评分预测。在Movielens实验数据集下,实验结果表明提出的算法具有较好的平均绝对误差。    

19.  一种优化的协同过滤推荐算法  被引次数:38
   周军锋  汤显  郭景峰《计算机研究与发展》,2004年第41卷第10期
   协同过滤技术被成功地应用于个性化推荐系统中.随着电子商务系统用户数目和商品数目的日益增加,整个项目空间上用户评分数据极端稀疏,传统的相似性度量方法存在一定的不足.在引入项目评分预测思想的基础上,考虑到数据稀疏性带来的影响,采用修正的条件概率方法计算项目相似性,提出一种优化的协同过滤推荐算法,计算结果更具有实际意义和准确性.实验表明,该算法能够有效避免传统方法带来的弊端,提高系统的推荐质量.    

20.  基于项目聚类的全局最近邻的协同过滤算法  
   韦素云 业宁 朱健 黄霞 张硕《计算机科学》,2012年第39卷第12期
   用户评分数据极端稀疏的情况下,传统相似性度量方法存在弊端,导致推荐系统的推荐质量急剧下降。针对此问题,提出了一种基于项目聚类的全局最近部的协同过滤算法。该算法根据项目之间的相似性进行聚类,使得相似性较高的项目聚成一类,在项目聚类集的基础上,计算用户的局部相似度,使用一种新的最近部用户全局相似度作为衡量用户间相似性的标准;其次,给出了一种利用重叠度因子来调节局部相似度的方法,以更准确地刻画用户之间的相似性。实验结果表明,该算法可以提升预测结果的准确性,提高推荐质量,特别是在数据较为稀疏时,改善尤为明显。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号