首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The theory of spectral invariants, or ‘p-theory’, states that the canopy scattering coefficient at any wavelength can be related to the leaf scattering coefficient at the same wavelength through a spectrally invariant canopy structural parameter — the photon recollision probability p. The p-theory has recently gained interest in the vegetation reflectance modeling community as an efficient tool for characterizing scattering in clumped foliage structures. In this short communication paper, we report empirical data of the relationship of canopy leaf area index (LAI), diffuse non-interceptance and photon recollision probability for 1032 coniferous and broadleaved forest plots measured in Finland. Our results indicate that the relationship of canopy LAI and diffuse non-interceptance is near-universal in boreal stands i.e. it does not depend on stand age, tree species or growth conditions. This allows improving parameterizations used by canopy reflectance models which utilize the photon recollision probability concept. Our results also suggest that establishing species-specific p-LAI functions for northern European forests requires more research on the influence of micro- and macroscale foliage grouping on photon recollision probability.  相似文献   

2.
Simulations of the different components of the spectral radiation budget of structurally simple leaf and shoot canopies with varying canopy leaf area index (LAI) were performed. The aims were (1) to test a proposed parameterization of the budget using two spectrally invariant canopy structural parameters (p and pt) governing canopy absorption and transmittance, respectively, and (2) to incorporate the effect of within-shoot scattering in the parameterization for shoot canopies. Results showed that canopy spectral absorption and scattering were well described by a single parameter, the canopy p value or ‘recollision probability’, which was closely related to LAI. The relationship between p and LAI was however different in leaf and shoot canopy: e.g., at the same LAI the recollision probability was larger in the shoot canopy. It was shown that the p value of the shoot canopy could be decomposed into the p value of an individual shoot (psh) and the p value of the leaf canopy with the same effective LAI (LAIe). The canopy p value allows calculation of canopy absorption and scattering at any given wavelength from the leaf (or needle) scattering coefficient at the same wavelength. To calculate canopy reflectance, separation of the downward and upward scattered parts is needed in addition. The proposed parameter pt worked rather well in the leaf canopy at moderate values of LAI, but not in the coniferous shoot canopy nor at high values of LAI. However, the simulated fraction of upward scattered radiation increased in a straightforward manner with LAI, and was not particularly sensitive to the leaf (or needle) scattering coefficient. Judged by this ‘smooth’ behavior, the existence of another kind of simple parameterization for this separation remains an interesting possibility.  相似文献   

3.
The three-dimensional structure of a coniferous shoot gives rise to multiple scattering of light between the needles of the shoot, causing the shoot spectral reflectance to differ from that of a flat leaf. Forest reflectance models based on the radiative transfer equation handle shoot level clumping by correcting the radiation attenuation coefficient with a clumping index. The clumping index causes a reduction in the interception of radiation by the canopy at a fixed leaf area index (LAI). In this study, we show how within-shoot multiple scattering is related to shoot scale clumping and derive a similar, but wavelength dependent, correction to the scattering coefficient. The results provide a method for integrating shoot structure into current radiative transfer equation based forest reflectance models. The method was applied to explore the effect of shoot scale clumping on canopy spectral reflectance using simple model canopies with a homogeneous higher level structure. The clumping of needles into shoots caused a wavelength dependent reduction in canopy reflectance, as compared to that of a leaf canopy with similar interception. This is proposed to be one reason why coniferous and broad-leaved canopies occupy different regions in the spectral space and exhibit different dependency of spectral vegetation indices on LAI.  相似文献   

4.
The Arctic region is predicted to experience considerable climatic and environmental changes as the global atmospheric CO2 increases. Growing awareness of the role of tundra and taiga ecosystems and their transition zone in the climate change process has resulted in a recent increase in remote sensing studies focusing on the Arctic latitudes. Remote sensing of biophysical properties of the canopy layer in the forested part of the region is often, however, challenged by the dominating role of the understory in the spectral signal. In this paper, we examine the influence of understory vegetation on forest reflectance in the Arctic region of Finland during no-snow conditions. The study is based on SPOT HRVIR images, field goniospectrometry, 300 ground reference plots and a physically-based forest reflectance model (PARAS). The results indicate that lichen-dominated forest site types can be distinguished from sites dominated by dwarf shrubs. The paper also contains results from applying an analytical method for calculating photon recollision probability from canopy transmittance data for forest stands, and then using it to simulate the reflectance of the same stands.  相似文献   

5.
The photon recollision probability in vegetation canopies, defined as the probability that a photon, after having interacted with a canopy element, will interact again, is a useful tool in remote sensing and ecological applications, enabling to link canopy optical properties at different wavelength and to estimate radiation absorption. In this work, a method is presented to estimate the photon recollision probability for horizontally homogeneous leaf canopies with arbitrary leaf angle distribution as well as for discrete crown canopies. The estimation is based on analytical approximation of the first-order recollision probability. Using the analytical solution of the two-stream equations of radiative transfer and Monte Carlo modeling, the first-order photon recollision probability is shown to slightly underestimate the mean recollision probability. Also, an approximation formula for the mean recollision probability in a horizontally homogeneous canopy is presented as a function of leaf area index. The method to calculate photon recollision probability in discrete crown canopies requires only the knowledge of total and between-crown canopy transmittance and is thus independent of the geometric-optical model used.  相似文献   

6.
Forest types differ in their hyperspectral anisotropy patterns mainly due to species-specific geometrical structure, spatial arrangement of canopies and subsequent shadow patterns. This paper examines the multi-angular, hyperspectral reflectance properties of typical hemiboreal forests during summer time using three simultaneous CHRIS PROBA (mode 3) scenes and stand inventory data from the Järvselja Training and Experimental Forestry District in southeastern Estonia. We investigated the magnitude and reasons for the differences in the anisotropy patterns of deciduous and coniferous stands at three backward viewing angles. A forest reflectance model (FRT) was used as a tool to provide a theoretical basis to the discussion, and to estimate the directional contribution of scattering from crowns and ground to total stand reflectance for the two forest types. The FRT model simulated successfully the HDRF (hemispherical–directional reflectance factor) curves of the study stands to match those obtained from the CHRIS image, yet it produced a smaller and less wavelength-dependent angular reflectance effect than was observed in the satellite image. The main results of this study provide new information for separating the spectral contribution of the forest floor (or understory layer) from the tree canopy layer: (1) the red edge domain was identified to have the largest contribution from forest understory, and (2) the more oblique the viewing angle, the smaller the contribution from the understory. In addition, coniferous stands were observed to have a specific angular effect at the red and red edge domain, possibly as a result of the hierarchical structure and arrangement of coniferous canopies.  相似文献   

7.
Information on the fractions of incident radiation reflected, transmitted and absorbed by a plant canopy is crucial in remote sensing of vegetation and modeling of canopy microclimate. Photon recollision probability p allows to calculate easily the spectral behavior of canopy scattering, i.e. the sum of canopy reflectance and transmittance. However, to divide the scattered radiation into reflected and transmitted fluxes, additional models are needed. In this paper, we present a simple formula to estimate the fraction of radiation scattered upwards by a canopy. The new method is semi-empirical, makes use of the concept of photon recollision probability, and is derived from an analysis of modeling results. Although a physical interpretation is given for the single additional parameter needed in the formula, the scattering asymmetry parameter q, the method is not strictly based on the radiative transfer equation. Our results indicate that the method is accurate for low to moderate leaf area index (LAI) values, and provides a reasonable approximation even at LAI = 8. In addition, we present a method to compute p using numerical radiative transfer models.  相似文献   

8.
The aim of this paper was to serve as a pilot study for running a physically based forest reflectance model through an operational forest management data base in Finnish coniferous forests. The LAI values of 250 boreal coniferous stands were retrieved with the physically based model by inversion from a SPOT HRVIR1 image. The use of three spectral vegetation indices (NDVI, RSR and MSI) in LAI estimation was tested for the same stands. Ground-truth LAI was based on an allometric model which can be applied to routine stand inventory data. Stand reflectances were computed as an average of reflectances of the pixels located within the digital stand borders.The relationships of LAI and spectral vegetation indices calculated from the SPOT data were very scattered. RSR exhibited the widest range of values (and the highest correlation with LAI), suggesting it to be more dynamic than MSI or NDVI. Inversion of the reflectance model was done twice: first using as simultaneous input three wavelength bands (red, NIR and MIR), then only the red and NIR bands. The aim was to observe whether including the MIR band in the inversion would improve the inverted LAI estimates or if using only the red and NIR bands would result in the same reliability of inverted values. The motivation for examining the influence of the MIR band resulted from several recent studies from the boreal zone which suggest that the pronounced understory effect could be minimized by the inclusion of the MIR band. The LAI values inverted by the model were slightly larger than the ground-truth LAI values. A minor improvement in LAI estimates was observed after the inclusion of the MIR band in reflectance model inversion. The errors in the ground-truth LAI were uncertain and the background understory reflectance was expected to be highly variable. Thus, the quality of the data used may be to a large extent responsible for the observed low utility of the tested channels.  相似文献   

9.
The concept of recollision probability originates from the theory of canopy spectral invariants (‘p-theory’) but is a simplification that involves several heuristic assumptions. Nonetheless, the concept has been shown to be a useful tool for incorporating the effects of 3D structure on canopy absorptive and reflective properties in forest reflectance models. A method is presented by which an average value of the canopy recollision probability () can be calculated from canopy gap fraction data, which are provided for example by the LAI-2000 plant canopy analyzer or can be extracted from fisheye photographs. The new method was used to calculate the average recollision probabilities ( values) of uniform leaf and shoot canopies, showing good agreement with results from Monte Carlo simulations. Strengths of the method presented here are the explicitly formulated relationship between recollision probability and canopy structure, and its direct applicability in canopy RT studies.  相似文献   

10.
Reliable monitoring of seasonality in the forest canopy leaf area index (LAI) in Siberian forests is required to advance the understanding of climate-forest interactions under global environmental change and to develop a forest phenology model within ecosystem modeling. Here, we compare multi-satellite (AVHRR, MODIS, and SPOT/VEGETATION) reflectance, normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and LAI with aircraft-based spectral reflectance data and field-measured forest data acquired from April to June in 2000 in a larch forest near Yakutsk, Russia. Field data in a 30 × 30-m study site and aircraft data observed around the field site were used. Larch is a dominant forest type in eastern Siberia, but comparison studies that consider multi-satellite data, aircraft-based reflectance, and field-based measurement data are rarely conducted. Three-dimensional canopy radiative transfer calculations, which are based on Antyufeev and Marshak's [Antyufeev, V.S., & Marshak, A.L. (1990). Monte Carlo method and transport equation in plant canopies, Remote Sensing of Environment, 31, 183-191] Monte Carlo photon transport method combined with North's [North, P.R. (1996). Three-dimensional forest light interaction model using a Monte Carlo method, IEEE Transactions on Geoscience and Remote Sensing, 34(4), 946-956] geometric-optical hybrid forest canopy scene, helped elucidate the relationship between canopy reflectance and forest structural parameters, including several forest floor conditions. Aircraft-based spectral measurements and the spectral response functions of all satellite sensors confirmed that biases in reflectance seasonality caused by differences in spectral response functions among sensors were small. However, some reflectance biases occur among the near infrared (NIR) reflectance data from satellite products; these biases were potentially caused by absolute calibration errors or cloud/cloud shadow contamination. In addition, reflectance seasonality in AVHRR-based NIR data was very small compared to other datasets, which was partially due to the spring-to-summer increase in the amount of atmospheric water vapor. Radiative transfer simulations suggest that bi-directional reflectance effects were small for the study site and observation period; however, changes in tree density and forest floor conditions affect the absolute value of NIR reflectance, even if the canopy leaf area condition does not change. Reliable monitoring of canopy LAI is achieved by minimizing these effects through the use of NIR reflectance difference, i.e., the difference in reflectance on the observation day from the reflectance on a snow-free/pre-foliation day. This may yield useful and robust parameters for multi-satellite monitoring of the larch canopy LAI with less error from intersensor biases and forest structure/floor differences. Further validation with field data and combined use of other index (e.g. normalized difference water index, NDWI) data will enable an extension of these findings to all Siberian deciduous forests.  相似文献   

11.
The components of the forest radiative transfer model FRT developed at Tartu Observatory, Estonia are compared to the results of measurements of forest canopy downward radiance under forest canopy. Measurements were performed with a hemispheric-view imaging CCD-radiometer which was specially designed for this task. A thorough study of metrological properties of the radiometer was carried out and the respective preprocessing algorithms were created. The angular distribution of view probabilities and NIR radiances for tree crowns, trunks and canopy gaps are measured and compared to the model simulations for two coniferous and a broadleaf forests. Generally, the model reproduced the angular courses of component probabilities and NIR radiances rather well, however, in some cases problems with both the absolute levels of radiance and the angular course arose.  相似文献   

12.
The spectral invariants theory predicts that the bidirectional reflectance factor (BRF) of a vegetation canopy can be expressed in terms of the canopy interceptance (i0), the recollision probability (p), and the directional escape probability (ρ). These spectral invariant parameters together form a novel canopy structural parameter – the directional area scattering factor (DASF). The DASF can be retrieved from remotely sensed hyperspectral imagery and has been found to be useful, e.g. for the separation of tree species. The spectral invariants theory, however, does not provide an interpretation of which specific canopy structural properties are captured by the DASF. In this study, we examined the possible link between the DASF and the canopy clumping index (β). A simple model was designed to simulate the effect of β on canopy first order scattering, which was assumed to govern the directional behaviour of the DASF. The model is based on a modified spectral invariants approach, where the assumption of constant p is relaxed so that the first order recollision probability (p1) and single scattering are calculated separately, and canopy BRF is expressed as the sum of the first and multiple order components. Simulations were performed on model canopies, where radiation penetration is described using a traditional statistical approach but allowing non-random foliage distributions caused by clumping. The results indicated a strong dependency between the modelled DASF and the canopy clumping index.  相似文献   

13.
The concept of canopy spectral invariants expresses the observation that simple algebraic combinations of leaf and canopy spectral transmittance and reflectance become wavelength independent and determine a small set of canopy structure specific variables. This set includes the canopy interceptance, the recollision and the escape probabilities. These variables specify an accurate relationship between the spectral response of a vegetation canopy to the incident solar radiation at the leaf and the canopy scale and allow for a simple and accurate parameterization for the partitioning of the incoming radiation into canopy transmission, reflection and absorption at any wavelength in the solar spectrum. This paper presents a solid theoretical basis for spectral invariant relationships reported in literature with an emphasis on their accuracies in describing the shortwave radiative properties of the three-dimensional vegetation canopies. The analysis of data on leaf and canopy spectral transmittance and reflectance collected during the international field campaign in Flakaliden, Sweden, June 25-July 4, 2002 supports the proposed theory. The results presented here are essential to both modeling and remote sensing communities because they allow the separation of the structural and radiometric components of the measured/modeled signal. The canopy spectral invariants offer a simple and accurate parameterization for the shortwave radiation block in many global models of climate, hydrology, biogeochemistry, and ecology. In remote sensing applications, the information content of hyperspectral data can be fully exploited if the wavelength-independent variables can be retrieved, for they can be more directly related to structural characteristics of the three-dimensional vegetation canopy.  相似文献   

14.
A popular method of satellite-based monitoring of the photosynthetic potential of vegetation is to calculate the normalised difference vegetation index (NDVI) from measurements of the red (RED) and near-infrared (NIR) bands. Enormous amounts of vegetation information have been obtained over continental to global areas based on NDVI derived from NOAA-AVHRR, Terra/Aqua-MODIS, and SPOT-VEGETATION satellite observations. In eastern Siberia, where sparse boreal forests are dominant, the lack of landscape-scale canopy-reflectance observations impedes interpretation of how NDVI seasonality is controlled by the forest canopy and floor status. We discuss the NDVI of the canopy and floor separately based on airborne spectral reflectance measurements and simultaneous airborne land surface images acquired around Yakutsk, Siberia, using a hedgehopping aircraft from spring to summer 2000. The aerial land surface images (4402 scenes) were visually classified into four types according to the forest condition: no-green canopy and snow floor (Type 1), green canopy and snow floor (Type 2), no-green canopy and no-snow floor (Type 3), and green canopy and no-snow floor (Type 4). The spectral reflectance from 350 to 1200 nm was then calculated for these four types. Type 1 had almost no difference in reflectance between the RED and NIR bands, and the resultant NDVI was slightly negative (− 0.03). Although Type 2 showed a significant difference between the two bands because of canopy greenness, the resultant NDVI was rather low (0.17) because of high reflection from the snow cover on the floor. In Type 3, the significant difference between the two bands was mainly caused by the greenness of the floor, and the NDVI was relatively high (0.45). The NDVI for Type 4 was the highest (0.75) among the four types. The contributions of reflectance from the forest canopy and floor to the total reflectance were tested with a forest radiative transfer model. The reflectance difference between NIR and RED bands (NIR − RED) of Type 4 (15.6%) was approximately double the differences of Type 2 (7.0%) and of Type 3 (7.9%), suggesting half-and-half contributions of forest canopy greenness and floor greenness to the total greenness. The result also suggested that the satellite-derived NDVI in the larch forest around Yakutsk reaches 85% of the maximum NDVI owing to the forest floor greenness, and only the other 15% of the increase in NDVI should be attributed to the canopy foliation. These results quantitatively reveal that the NDVI depends considerably on forest floor greenness and snow cover in addition to canopy greenness in the case of relatively sparse forest in Siberia.  相似文献   

15.
The effect of crown shape on the reflectance of coniferous stands   总被引:1,自引:0,他引:1  
The Kuusk-Nilson forest reflectance model was used to study the effect of crown shape on the reflectance of Scots pine and Norway spruce stands. In the first part of the study, we examined spruce and pine stands with an age range of 20-100 years and compared their simulated hemispherical-directional reflectance factors (HDRFs) at nadir in red (661 nm), NIR (838 nm) and MIR (1677 nm) when crowns were modeled as ellipsoids or cones. In all the cases, when a stand was modeled with conical crowns, it had a smaller reflectance factor than the same stand with ellipsoidal crowns.To analyze the sensitivity of HDRF on crown shape, in the second part of the study we simulated the angular distributions of HDRF of two pine stands with different leaf area index (LAI) and canopy closure values at 661 nm assuming four different crown shapes (cone, cylinder, ellipsoid, and cylinder bottom, cone top) and separated the components forming the HDRF. Considerable difference in the HDRF between the four crown shapes was observed: The larger the crown volume, the higher the canopy reflectance at similar LAI and canopy closure. A comparison of the two stands revealed that in denser stands (with a higher canopy closure) single scattering from tree crowns was responsible for the difference in HDRF between the different crown shapes, whereas in stands with a smaller canopy closure the single scattering from ground dominated the HDRF. Finally, the role of crown shape for the retrieval of LAI by inversion from remotely sensed data is discussed.  相似文献   

16.
The paper describes the design and operation of a multi-angle spectrometer (MAS) for automatic measurement of near-field spectral reflectances of plant canopies at hourly intervals. A novel feature of the instrument is a rotating periscope connected to a spectrometer via a fiber optic cable. Canopy reflectances are calculated for multiple view azimuths, at a single zenith angle from measurements of spectrometer dark current, incoming solar irradiance and reflected radiances. Spectral measurements are made between 300 and 1150 nm wavelength at a band-to-band spacing of 3 nm, and a bandwidth (full-width, half maximum) of 10 nm. Preliminary data analysis showed that the canopy reflectance model of Kuusk [Kuusk, A. (1995). A fast, invertible canopy reflectance model. Remote Sensing of Environment 51, 342-350] reproduced the observed large differences in visible and near-infrared (NIR) reflectances, but the model was unable to predict quantitatively the observed variations in the measured reflectance spectra with azimuth, particularly in the NIR. Discrepancies between model and measurements are likely due to the inhomogeneous nature of the forest canopy in contrast to the assumption of a uniformly absorbing turbid medium in the model. Measurements using the MAS can be used to investigate directional dependences of reflectance indices and for testing BRDF models used to separate geometrical and plant physiological contributions to the reflectance signals. The MAS provides continuous sampling of reflectance indices which can be compared with canopy properties such as chlorophyll content and photosynthetic capacity.  相似文献   

17.
Forest leaf area index (LAI), is an important variable in carbon balance models. However, understory vegetation is a recognized problem that limits the accuracy of satellite-estimated forest LAI. A canopy reflectance model was used to investigate the impact of the understory vegetation on LAI estimated from reflectance values estimated from satellite sensor data. Reflectance spectra were produced by the model using detailed field data as input, i.e. forest LAI, tree structural parameters, and the composition, distribution and reflectance of the forest floor. Common deciduous and coniferous forest types in southern Sweden were investigated. A negative linear relationship (r2 = 0.6) was observed between field estimated LAI and the degree of understory vegetation, and the results indicated better agreement when coniferous and deciduous stands were analysed separately. The simulated spectra verified that the impact of the understory on the reflected signal from the top of the canopy is important; the reflectance values varying by up to ± 18% in the red and up to ± 10% in the near infra-red region of the spectra due to the understory. In order to predict the variation in LAI due to the understory vegetation, model inversions were performed where the input spectra were changed between the minimum, average and maximum reflectance values obtained from the forward runs. The resulting variation in LAI was found to be 1.6 units on average. The LAI of the understory could be predicted indirectly from simple stand data on forest characteristics, i.e. from allometric estimates, as an initial step in the process of estimating LAI. It is suggested here that compensation for the effect of the understory would improve the accuracy in the estimates of canopy LAI considerably.  相似文献   

18.
A detailed 3D structural model of a conifer forest canopy was developed in order to simulate the reflectance (optical) and backscatter (microwave) signals measured remotely. We show it is feasible to model forest canopy scattering using detailed 3D models of tree structure including the location and orientation of individual needles. An existing structural growth model of Scots pine (Pinus sylvestris L.), Treegrow, was modified to simulate observed growth stages of a Scots pine canopy from age 5 to 50 years. The 3D tree models showed close structural agreement with in situ measurements. Needles were added to the structural models according to observed phyllotaxy (distribution). Individual trees were used to generate model canopies, which in turn were used to drive optical and microwave models of canopy scattering. Simulated canopy radiometric response was compared with airborne hyperspectral reflectance data (HyMAP) and airborne synthetic aperture RADAR (ASAR) backscatter data. Model simulations agreed well in general with observations, particularly at optical wavelengths where model simulations of low and high density canopy stands were shown to bracket observations. Relatively small sensitivity of observed reflectance to canopy age was captured reasonably well by the simulations. The choice of needle shape and phyllotaxy was shown to have a significant impact on multiple scattering behaviour at the branch scale. In the microwave domain, simulated backscatter values agreed reasonably well with observations at L-band, less so at X-band. L-band simulated backscatter significantly underestimated observed backscatter at younger canopy ages, probably as a result of inappropriate modelling of soil/understory. It is demonstrated that a combined structural and radiometric modelling approach provides a flexible and powerful method for simulating the remotely sensed signal of a forest canopy in the optical and microwave domains. This is particularly useful for exploring the impact of canopy structure on the resulting signal and also for combined retrievals of forest structural parameters from optical and microwave data.  相似文献   

19.
Bidirectional reflectance factors (BRFs) of crop stands are strongly influenced by canopy architecture. In wheat, as well as in many other crops, canopy architecture changes dramatically with the phenological development of the plant community.

A ground-based experiment was performed to examine the effect of panicles of winter wheat (Triticum aestivum L.) at the flowering stage on canopy BRFs. Reflectance factors were measured in the field with a portable radiometer in the red (0-63-0-69 μm) and near-infrared (0-76-0-90 μm) wavelength intervals. Observations were made at three viewing angles and 14 solar zenith angles during two consecutive days on a control target and on a target where panicles had been removed.

Panicles did not contribute significantly to the red nor to the near-infrared (NIR) reflectance factors computed from nadir observations. Off-nadir NIR reflectance was also not altered by the presence of panicles, but was moderately sensitive to illumination angle. Off-nadir red reflectance in the backscattcring direction was higher in the canopy with panicles than in the canopy without panicles: at a solar zenith angle of about 50° the difference in the reflectance of the two targets reached a maximum of about 39 per cent.

These findings imply a potential to identify crops and their phenological development by more fully exploiting reflectance at several different viewing and solar angles.  相似文献   

20.
A study has been carried out to assess angular variations in red and near infrared (NIR) reflectance of different features of the Earth's surface in a common overlap area of accumulated four-date Indian Remote Sensing Satellite (IRS-1D) Wide Field Sensor (WiFS) data from the first fortnight of October 2003. An improved dark object subtraction (DOS) method has been used to perform image based atmospheric corrections. Red and NIR reflectance variations of four structurally different classes—dense vegetation (shrub), sparse crop (pearl millet/maize), wasteland and forest with Sun-target-sensor geometry were analysed. A linearly constrained least squares technique was used to estimate red and NIR model coefficients of the linear Ross Thick-Li Sparse (RTLS) semi- empirical Bidirectional Reflectance Distribution Function (BRDF) model and compared with Moderate Resolution Imaging Spectrometer (MODIS) BRDF product coefficients. The relative reflectance difference between two dates as well as anisotropic factors for red and NIR for all classes and dates were also computed. Red and NIR reflectance of the four land cover classes at different locations with different observation geometry were estimated using both WiFS derived and MODIS BRDF product RTLS model coefficients and compared with WiFS observed reflectance. It was found that the mean relative difference in red and NIR reflectances between consecutive dates varied between 4–11% and 6–8%, respectively, while the computed mean anisotropy factors varied between 3–10% in the red and 8–11% in the NIR. A small anisotropy in the Normalized Difference Vegetation Index (NDVI) as a function of the scattering angle was observed for the four land cover classes. This may imply that angular effects in WiFS are relatively small and do not exceed 10–11 % for the land cover classes considered here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号