首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
Normalized explicit approximate inverse matrix techniques for computing explicitly various families of normalized approximate inverses based on normalized approximate factorization procedures for solving sparse linear systems, which are derived from the finite difference and finite element discretization of partial differential equations are presented. Normalized explicit preconditioned conjugate gradient-type schemes in conjunction with normalized approximate inverse matrix techniques are presented for the efficient solution of linear and non-linear systems. Theoretical estimates on the rate of convergence and computational complexity of the normalized explicit preconditioned conjugate gradient method are also presented. Applications of the proposed methods on characteristic linear and non-linear problems are discussed and numerical results are given.  相似文献   

2.
A new parallel normalized optimized approximate inverse algorithm, based on the concept of antidiagonal wave pattern, for computing classes of explicitly approximate inverses, is introduced for symmetric multiprocessor systems. The parallel normalized explicit approximate inverses are used in conjunction with parallel normalized explicit preconditioned conjugate gradient schemes for the efficient solution of finite element sparse linear systems. The parallel design and implementation issues of the new algorithm are discussed and the parallel performance is presented using OpenMP. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Explicit approximate inverse preconditioning techniques   总被引:1,自引:0,他引:1  
Summary  The numerical treatment and the production of related software for solving large sparse linear systems of algebraic equations, derived mainly from the discretization of partial differential equation, by preconditioning techniques has attracted the attention of many researchers. In this paper we give an overview of explicit approximate inverse matrix techniques for computing explicitly various families of approximate inverses based on Choleski and LU—type approximate factorization procedures for solving sparse linear systems, which are derived from the finite difference, finite element and the domain decomposition discretization of elliptic and parabolic partial differential equations. Composite iterative schemes, using inner-outer schemes in conjunction with Picard and Newton method, based on approximate inverse matrix techniques for solving non-linear boundary value problems, are presented. Additionally, isomorphic iterative methods are introduced for the efficient solution of non-linear systems. Explicit preconditioned conjugate gradient—type schemes in conjunction with approximate inverse matrix techniques are presented for the efficient solution of linear and non-linear system of algebraic equations. Theoretical estimates on the rate of convergence and computational complexity of the explicit preconditioned conjugate gradient method are also presented. Applications of the proposed methods on characteristic linear and non-linear problems are discussed and numerical results are given.  相似文献   

4.
A new parallel shared memory Java multithreaded design and implementation of the explicit approximate inverse preconditioning, for efficiently solving arrow‐type linear systems on symmetric multiprocessor systems (SMPs), is presented. A new parallel algorithm for computing a class of optimized approximate arrow‐type inverse matrix is introduced. The performance on an SMP, using Java multithreading, is investigated by solving arrow‐type linear systems and numerical results are given. The parallel performance of the construction of the optimized approximate inverse and the explicit preconditioned generalized conjugate gradient square scheme, using a dynamic workload scheduling, is also presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
A new class of approximate inverse arrow-type matrix techniques based on the concept of sparse approximate LU-type factorization procedures is introduced for computing explicitly approximate inverses without inverting the decomposition factors. Isomorphic methods in conjunction with explicit preconditioned schemes based on approximate inverse matrix techniques are presented for the efficient solution of arrow-type linear systems. Applications of the proposed method on linear systems is discussed and numerical results are given  相似文献   

6.
A class of finite difference schemes in conjunction with approximate inverse banded matrix techniques based on the concept of LU-type factorization procedures is introduced for computing fast explicit approximate inverses. Explicit preconditioned iterative schemes in conjunction with approximate inverse matrix techniques are presented for the efficient solution of banded linear systems. A theorem on the rate of convergence and estimates of the computational complexity required to reduce the L-norm of the error is presented. Applications of the method on linear and non-linear systems are discussed and numerical results are given.  相似文献   

7.
High Performance Inverse Preconditioning   总被引:1,自引:0,他引:1  
The derivation of parallel numerical algorithms for solving sparse linear systems on modern computer systems and software platforms has attracted the attention of many researchers over the years. In this paper we present an overview on the design issues of parallel approximate inverse matrix algorithms, based on an anti-diagonal “wave pattern” approach and a “fish-bone” computational procedure, for computing explicitly various families of exact and approximate inverses for solving sparse linear systems. Parallel preconditioned conjugate gradient-type schemes in conjunction with parallel approximate inverses are presented for the efficient solution of sparse linear systems. Applications of the proposed parallel methods by solving characteristic sparse linear systems on symmetric multiprocessor systems and distributed systems are discussed and the parallel performance of the proposed schemes is given, using MPI, OpenMP and Java multithreading.  相似文献   

8.
A new class of inner-outer iterative procedures in conjunction with Picard-Newton methods based on explicit preconditioning iterative methods for solving nonlinear systems is presented. Explicit preconditioned iterative schemes, based on the explicit computation of a class of domain decomposition generalized approximate inverse matrix techniques are presented for the efficient solution of nonlinear boundary value problems on multiprocessor systems. Applications of the new composite scheme on characteristic nonlinear boundary value problems are discussed and numerical results are given.  相似文献   

9.
A couple of approximate inversion techniques are presented which provide a parallel enhancement to several iterative methods for solving linear systems arising from the discretization of boundary value problems. In particular, the Jacobi, Gauss‐Seidel, and successive overrelaxation methods can be improved substantially in a parallel environment by the extensions considered. A special case convergence proof is presented. The use of our approximate inverses with the preconditioned conjugate gradient method is examined and comparisons are made with some recently proposed algorithms in this area that also employ approximate inverses. The methods considered are compared under sequential and parallel hardware assumptions.  相似文献   

10.
We experimentally study how reordering techniques affect the rate of convergence of preconditioned Krylov subspace methods for non-symmetric sparse linear systems, where the preconditioner is a sparse approximate inverse. In addition, we show how the reordering reduces the number of entries in the approximate inverse and thus, the amount of storage and computation required for a given accuracy. These properties are illustrated with several numerical experiments taken from the discretization of PDEs by a finite element method and from a standard matrix collection.  相似文献   

11.
在对称多处理机系统上,提出了一种求解稀疏对称有限元线性系统的正规化精确并行逆算法。该算法以一种避免数据依赖的反对角运动方法为基础,使用OpenMP编译指导来实现。诸如加速比和效率等数值实验结果的推出,说明在一个对称多处理机系统上,所提出的算法求解方法能更好地提高性能,获得更大的加速。  相似文献   

12.
The need for accuracy in the solution of linear systems derived from the discretization of partial differential equations leads to large sparse linear systems. The solution of sparse linear systems requires efficient scalable methods. Iterative solvers require efficient parallel preconditioning methods to solve effectively sparse linear systems. Herewith, a new parallel algorithm for the generic approximate sparse inverse matrix method for distributed memory systems is proposed. The computation of the distributed generic approximate sparse inverse matrix is based on a column-wise approach, which allows the separation to independent problems that can be handled in parallel without synchronization points or intermediate communications. This is achieved by reforming the generic approximate sparse inverse matrix algorithm and its process of computation with a new partial solution method for the computation of the nonzero elements of each column dictated by the approximate inverse sparsity pattern. Moreover, an algorithmic scheme is proposed for the efficient distribution of data amongst the available workstations, along with a load balancing scheme for problems with large standard deviation in the number of nonzero elements per column. Numerical results are presented for the proposed schemes for various model problems.  相似文献   

13.
During the last decades, multigrid methods have been extensively used in order to solve large scale linear systems derived from the discretization of partial differential equations using the finite difference method. The effectiveness of the multigrid method can be also exploited by using the finite element method. Finite Element Approximate Inverses in conjunction with Richardon’s iterative method could be used as smoothers in the multigrid method. Thus, a new class of smoothers based on approximate inverses can be derived. Effectiveness of explicit approximate inverses relies in the fact that they are close approximants to the inverse of the coefficient matrix and are fast to compute in parallel. Furthermore, the proposed class of finite element approximate inverses in conjunction with the explicit preconditioned Richardson method yield improved results against the classic smoothers such as Jacobi method. Moreover, a dynamic relaxation scheme is proposed based on the Dynamic Over/Under Relaxation (DOUR) algorithm. Furthermore, results for multigrid preconditioned Krylov subspace methods, such as GMRES(res), IDR(s) and BiCGSTAB based on approximate inverse smoothing and a dynamic relaxation technique are presented for the steady-state convection-diffusion equation.  相似文献   

14.
A general method in the form of an accelerated preconditioned iterative refinement method (including some wellknown iterative methods and direct factorization methods) is presented for the solution of symmetric, sparse matrix problems. An analysis of one such approximate factorization, the SSOR method, is given, and some inherently advantageous properties of the conjugate gradient acceleration method are pointed out. A comparison is made of the computational complexity and storage in the SSOR preconditioned method with some direct methods applied to second order discretized boundary value problems. For plane problems of average size the direct methods are somewhat faster if enough right hand sides are present. For large enough problems (large number of nodes) the iterative method is faster. For three-dimensional problems no Cholesky factorization method can compete with the SSOR preconditioned method, not even for average sized problems.  相似文献   

15.
A class of Generalized Approximate Inverse Matrix (GAIM) techniques, based on the concept of LU-sparse factorization procedures, is introduced for computing explicitly approximate inverses of large sparse unsymmetric matrices of irregular structure, without inverting the decomposition factors. Explicit preconditioned iterative methods, in conjunction with modified forms of the GAIM techniques, are presented for solving numerically initial/boundary value problems on multiprocessor systems. Application of the new methods on linear boundary-value problems is discussed and numerical results are given.  相似文献   

16.
We discuss a procedure for the adaptive construction of sparse approximate inverse preconditionings for general sparse linear systems. The approximate inverses are based on minimizing a consistent norm of the difference between the identity and the preconditioned matrix. The analysis provides positive definiteness and condition number estimates for the preconditioned system under certain circumstances. We show that for the 1-norm, restricting the size of the difference matrix below 1 may require dense approximate inverses. However, this requirement does not hold for the 2-norm, and similarly reducing the Frobenius norm below 1 does not generally require that much fill-in. Moreover, for the Frobenius norm, the calculation of the approximate inverses yields naturally column-oriented parallelism. General sparsity can be exploited in a straightforward fashion. Numerical criteria are considered for determining which columns of the sparse approximate inverse require additional fill-in. Spare algorithms are discussed for the location of potential fill-in within each column. Results using a minimum-residual-type iterative method are presented to illustrate the potential of the method.  相似文献   

17.
Applying a finite difference approximation to a biharmonic equation results in a very ill conditioned system of equations. This paper examines the conjugate gradient method used with polynomial preconditioning techniques for solving such linear systems. A new approach using an approximate polynomial preconditioner is described. The preconditioner is constructed from a series approximation based on the Laplacian finite difference matrix. A particularly attractive feature of this approach is that the Laplacian matrix consists of far fewer non-zero entries than the biharmonic finite difference matrix. Moreover, analytical estimates and computational results show that this preconditioner is more effective (in terms of the rate of convergence and the computational work required per iteration) than the polynomial preconditioner based on the original biharmonic matrix operator. The conjugate gradient algorithm and the preconditioning step can be efficiently implemented on a vector super-computer such as the CDC CYBER 205.This work was supported in part by the Natural Sciences and Engineering Research Council of Canada Grant U0375; and in part by NASA (funded under the Space Act Agreement C99066G) while the author was visiting ICOMP, NASA Lewis Research Center.The work of this author was supported by an Izaak Walton Killam Memorial Scholarship.  相似文献   

18.
《国际计算机数学杂志》2012,89(10):1265-1279
Due to their rapid convergence properties, recent focus on iterative methods in the solution of linear system has seen a flourish on the use of gradient techniques which are primarily based on global minimisation of the residual vectors. In this paper, we conduct an experimental study to investigate the performance of several preconditioned gradient or variational techniques to solve a system arising from the so-called rotated (skewed) finite difference discretisation in the solution of elliptic partial differential equations (PDEs). The preconditioned iterative methods consist of variational accelerators, namely the steepest descent and conjugate gradient methods, applied to a special matrix ‘splitting’ preconditioned system. Several numerical results are presented and discussed.  相似文献   

19.
稀疏近似逆预条件子及其并行计算   总被引:1,自引:0,他引:1  
文中使用范数极小技术,提出一种构造稀疏矩阵并行近似逆预条件子的方法,所构造的稀疏矩阵近似逆的稀疏结构和数据矩阵的转置矩阵相同,计算量和存储量上,其求解过程易于并行。且并行计算不影响其收敛效果。通过试算表明,该方法对很多问题的求解具有明显的加速效果。文中给出了该方法的并行算法,并提出了一种自适应分配算法来解决负载平衡问题。  相似文献   

20.
针对基于GPU求解大规模稀疏线性方程组进行了研究,提出一种稀疏矩阵的分块存储格式HMEC(hybrid multiple ELL and CSR)。通过重排序优化系数矩阵的存储结构,将系数矩阵以一定的比例分块存储,采用ELL与CSR存储格式相结合的方式以适应不同的分块特征,分别使用适用于不对称矩阵的不完全LU分解预处理BICGStab法和对称正定矩阵的不完全Cholesky分解预处理共轭梯度法求解大规模稀疏线性系统。实验表明,应用HMEC格式存储稀疏矩阵并以调用GPU kernel的方式实现前述两种方法,与其他存储格式的实现方式作比较,最优可分别获得31.89%和17.50%的加速效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号