首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 328 毫秒

1.  改进的全局K'-means算法及其在数据分类中的应用  
   李大字  钱丽  靳其兵  谭天伟《信息与控制》,2011年第40卷第1期
   为了解决初始聚类中心的选择、簇个数的确定以及孤立点的避免等问题,提出了一种改进的全局K'-means算法.改进的算法不仅能够利用辅助聚类函数来计算初始点,而且能够利用目标函数在没有预定义聚类个数的前提下,找到实际的聚类中心个数,同时避免r孤立点问题.将改进的算法应用到实际数据集的分类中,并与改进的全局K-means算法以及K'-means算法进行了比较,实验结果证明所提出的算法能获得更好的聚类结果.    

2.  改进的全局K′-means算法及其在数据分类中的应用  
   李大字  钱丽  靳其兵《信息与控制》,2011年第40卷第1期
   为了解决初始聚类中心选择,簇个数的确定,以及孤立点等问题,本文提出了一种改进的全局K′-means算法。改进的算法不仅能够利用辅助聚类函数来计算初始点,而且能够利用目标函数在没有预定义聚类个数的前提下,找到实际的聚类中心个数,同时避免了孤立点问题。将改进的算法应用到实际数据集的分类中,并与改进的全局K-means算法以及K′-means算法进行了比较,实验结果证明所提出的算法能获得更好的聚类结果。    

3.  自适应的软子空间聚类算法  被引次数:3
   陈黎飞  郭躬德  姜青山《软件学报》,2010年第21卷第10期
   软子空间聚类是高维数据分析的一种重要手段.现有算法通常需要用户事先设置一些全局的关键参数,且没有考虑子空间的优化.提出了一个新的软子空间聚类优化目标函数,在最小化子空间簇类的簇内紧凑度的同时,最大化每个簇类所在的投影子空间.通过推导得到一种新的局部特征加权方式,以此为基础提出一种自适应的k-means型软子空间聚类算法.该算法在聚类过程中根据数据集及其划分的信息,动态地计算最优的算法参数.在实际应用和合成数据集上的实验结果表明,该算法大幅度提高了聚类精度和聚类结果的稳定性.    

4.  基于细菌群体趋药性优化的k-means算法  被引次数:1
   于来行  张敏  葛斌《计算机工程与设计》,2009年第30卷第7期
   细茵趋药性算法是一种新的仿生进化算法,针对细菌趋药性算法,介绍了其基本原理,讨论了一种改进的算法--细菌群体趋药性(BCC)算法.将细菌群体趋药性优化方法应用在k-means聚类分析中,以类内离散度和为目标函数,建立了BCC优化的k-means算法模型,利用BCC算法的全局搜索能力,很大程度上避免了k-means算法易陷入局部极小的缺陷,同时也降低了算法对初始值的敏感度,并给出了一些实验,结果令人满意.    

5.  基于相对密度和流形上k近邻的聚类算法  
   古凌岚  彭利民《计算机科学》,2016年第43卷第12期
   针对传统的基于欧氏距离的相似性度量不能完全反映复杂结构的数据分布特性的问题,提出了一种基于相对密度和流形上k近邻的聚类算法。基于能描述全局一致性信息的流形距离,及可体现局部相似性和紧密度的k近邻概念,通过流形上k近邻相似度度量数据对象间的相似性,采用k近邻的相对紧密度发现不同密度下的类簇,设计近邻点对约束规则搜寻k近邻点对构成的近邻链,归类数据对象及识别离群点。与标准k-means算法、流形距离改进的k-means算法进行了性能比较,在人工数据集和UCI数据集上的仿真实验结果均表明,该算法能有效地处理复杂结构的数据聚类问题,且聚类效果更好。    

6.  基于约束信息的并行k-means算法  
   於跃成  王建东  郑关胜  陈斌《Canadian Metallurgical Quarterly》,2011年第41卷第3期
   为获得分布式数据集上用户所期望的聚类结果,提出了基于约束信息的并行k-means聚类算法.在分析并行k-means能够有效实现对水平分布式数据集进行聚类的基础上,修改并行k-means算法的目标函数,设计约束并行k-means算法,将站点用户的约束信息以chunklet的形式引入到分布式聚类过程,从而引导算法执行有偏搜索.约束并行k-means算法在理论上保证无约束样本簇内距离最小的同时能够确保chunklet约束中的样本与对应的簇中心之间的平均距离最小.实验结果表明,约束并行k-means算法能够有效改善并行k-means的聚类精度,同时在分布式环境下能够得到与已有约束聚类算法在集中式数据集上相等价的聚类结果.    

7.  流形上的非线性判别K均值聚类  被引次数:1
   高丽平  周雪燕  詹宇斌《计算机应用》,2011年第31卷第12期
   为提高具有流形结构的高维数据的聚类性能,提出非线性判别K均值聚类算法(NDisKmeans)。该方法通过引入流形上的谱正则化技术,将数据的低维嵌入表示成数据流形上平滑函数的线性组合,然后通过最大化低维空间中聚类类间的散度与总体散度的比值,来实现对高维数据的聚类。还设计了一种收敛的迭代求解方法来求解最优组合系数矩阵和聚类赋值矩阵。NDisKmeans方法由于考虑了数据的流形结构,克服了判别K均值算法中线性映射的不足,从而提高了对高维数据聚类的性能。最后在数据集上的广泛实验表明,NDisKmeans方法能有效实现对高维数据的聚类。    

8.  改进萤火虫优化的软子空间聚类算法  
   张曦  赵嘉  李沛武  王家园  谢智峰《南昌工程学院学报》,2018年第4期
   目标函数与搜索策略有效地结合可以提高软子空间聚类算法的性能。传统的软子空间聚类算法迭代求解时受初始聚类中心和噪声数据的影响极易陷入局部最优。针对该问题,提出一种改进萤火虫优化的软子空间聚类算法。算法引入目标函数和隶属度计算方法对界约束的权值矩阵进行评估并对数据样本进行分簇,将权值矩阵看成聚类问题的可行解,运用改进萤火虫算法优化求得较优的权值矩阵,从而改善聚类效果。在UCI数据集上的实验结果表明,改进后的算法能有效收敛于全局最优解,具有良好的聚类效果。    

9.  基于竞争学习的K质心组合聚类算法  
   张宇  邵良衫  邱云飞  刘威《计算机工程》,2011年第37卷第15期
   K-Means算法的聚类结果对初始簇的选择非常敏感,通常获得的是局部最优解而非全局最优解。为此,在K-Means聚类算法基础上,引入组合聚类和竞争学习概念,提出一种基于竞争学习的K质心组合聚类算法CLK-Centroid。该算法采用竞争学习策略计算簇的质心,以适应噪声数据和分布异常数据的要求,使用组合聚类策略提高聚类的精度。在数据集上构建多个CLK-Centroid聚类器进行聚类,构建子簇相似矩阵,并根据子簇之间的相似性合并相似簇。理论分析和实验结果表明该算法能够提高聚类质量。    

10.  一种改进的基于粒子群的聚类算法  
   杨志  罗可《计算机应用研究》,2014年第31卷第9期
   针对K-means对初始聚类中心敏感和易陷入局部最优的缺点,提出了一种改进的基于粒子群的聚类算法.该算法结合基于密度和最大最小距离法来确定初始聚类中心,解决K-means对初始值敏感的问题;利用粒子群算法全局寻优能力强的优点,避免K-means陷入局部最优.通过对样本集各维属性的规范化处理,惯性权值采用凹函数递减,计算相异度矩阵,引入用群体适应度方差,进一步优化混合算法.实验结果表明,该算法具有更高的准确率和更强的收敛能力.    

11.  K-means聚类算法研究综述  被引次数:2
   王千  王成  冯振元  叶金凤《电子设计工程》,2012年第20卷第7期
   总结评述了K-means聚类算法的研究现状,指出K-means聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means聚类算法的目标函数、算法流程,并列举了一个实例,指出了数据子集的数目K、初始聚类中心选取、相似性度量和距离矩阵为K-means聚类算法的3个基本参数。总结了K-means聚类算法存在的问题及其改进算法,指出了K-means聚类的进一步研究方向。    

12.  非均匀数据的变异系数聚类算法  
   杨天鹏  徐鲲鹏  陈黎飞《山东大学学报(工学版)》,2018年第3期
   针对现有基于划分的聚类算法无法有效聚类簇大小和簇密度有较大差异的非均匀数据的问题,提出一种基于变异系数聚类算法。从聚类优化目标的角度出发,分析了以K-means为代表的划分聚类算法引发"均匀效应"的成因;提出以变异系数度量非均匀数据的分布散度,并基于变异系数定义一种非均匀数据的相异度公式;基于相异度公式定义了聚类目标优化函数,并根据局部优化方法给出聚类算法过程。在合成和真实数据集上的试验结果表明,与K-means、Verify2、ESSC聚类算法相比,本研究提出的非均匀数据的变异系数聚类算法(coefficient of variation clustering for non-uniform data,CVCN)聚类精度提升5%~40%。    

13.  基于网格和图论的初始聚类中心确定算法  
   黄红伟  黄天民《计算机应用与软件》,2015年第2期
   针对传统K-means算法随机选取初始聚类中心,易造成准则函数收敛速度慢、聚类结果陷入局部最优等问题,提出一种基于网格和图论的初始聚类中心确定算法。该算法将数据空间网格化,通过在网格单元上形成树的连通分支来选取初始中心点。采用模拟和真实数据集对该算法选取的初始中心进行测试,实验结果表明,改进后的K-means算法在降低时间复杂度、减少迭代次数以及提高聚类精度方面都取到了较好的效果。    

14.  多尺度的谱聚类算法  被引次数:1
   施培蓓  郭玉堂  胡玉娟  俞骏《计算机工程与应用》,2011年第47卷第8期
   提出了一种多尺度的谱聚类算法。与传统谱聚类算法不同,多尺度谱聚类算法用改进的k-means算法对未经规范的La-placian矩阵的特征向量进行聚类。与传统k-means算法不同,改进的k-means算法提出一种新颖的划分数据点到聚类中心的方法,通过比较聚类中心与原点的距离和引入尺度参数来计算数据点与聚类中心的距离。实验表明,改进算法在人工数据集上取得令人满意的结果,在真实数据集上聚类结果较优。    

15.  传感器网络分布式免疫遗传聚类算法研究  
   洪月华《微电子学与计算机》,2013年第3期
   本文研究无线传感器网络数据的聚类分析问题.针对传统 k‐means 对初始聚类中心敏感和易于陷入局部次优解的缺点,提出一种基于传感器网络的分布式免疫遗传 k‐means 聚类算法.该算法将聚类中心作为染色体,通过遗传算法来优化传统 k‐means 聚类算法的初始聚类中心,将免疫算法的选择操作引入染色体的遗传进化中,使染色体的浓度和适应度共同对其在进化中被选择产生影响,实现了染色体种群的多样性保持机制和自我调节功能,将搜索工作引向全局最优,较好地解决了 k‐means 算法的早熟现象问题.实验结果证明,本文算法改进了数据的聚类划分效果,能够把聚类结果快速收敛至全局最优,聚类准确率较高.    

16.  使用证据累积的文本聚类谱算法  
   徐森  卢志茂  张春祥  顾国昌  张琦《哈尔滨工程大学学报》,2010年第31卷第8期
   针对谱聚类算法相似度函数设置困难问题,提出了一种使用证据累积的文本聚类谱算法.该算法使用超球K均值算法对文本集进行多次聚类,并将每次得到的划分结果作为判断2个文本是否应该放在一个簇中的证据,由此构建文本的相似度矩阵和正则化拉普拉斯矩阵.在TREC和Reuters文本集上进行了实验,验证了本文算法的有效性,它比层次聚类算法和CLUTO提供的K均值算法更加优越.    

17.  基于秩约束密度敏感距离的自适应聚类算法  
   任永功  刘洋  赵月《计算机科学》,2017年第44卷第5期
   传统的聚类算法一般使用欧氏距离获得数据的相似矩阵,在处理一些较复杂的数据时,欧氏距离由于不能反映全局一致性,因此无法有效地描述出数据点的实际分布。提出了一种基于秩约束密度敏感距离(Rank Constraints Density Sensitive Distance,RCDSD) 的自适应聚类算法。该方法首先引入密度敏感距离的相似性度量得到相似矩阵,有效地扩大了不同类数据点之间的距离,缩小了同类数据点间的距离,从而解决了传统聚类算法使用欧氏距离作为相似性度量导致聚类结果出现偏差的弊端;其次,在相似矩阵的拉普拉斯矩阵上施加秩约束,使相似矩阵的连通区域数等于聚类数,直接将数据点划分到正确的类中,得到最终的聚类结果,而不需要执行k-means或其它离散化程序。在人工仿真数据集和真实数据集上进行了大量实验,结果表明,所提算法得到了准确的聚类结果,并提高了聚类性能。    

18.  一种光滑局部敏感鉴别分析方法  
   徐春明《计算机工程》,2011年第37卷第13期
   传统的局部敏感鉴别分析方法未考虑原有图像样本像素关系信息,识别效果受到影响。为此,提出一种光滑局部敏感鉴别分析方法。针对图像样本构造一个基于离散拉谱拉斯图的正则化项,该正则化项包含图像像素关系的先验信息,并将其嵌入到局部敏感鉴别分析的目标函数中,使抽取的特征具有空间光滑的特性,从而增强局部敏感鉴别分析算法的泛化能力。在ORL和IMDB人脸数据集上的实验结果证明了该方法的有效性。    

19.  初始中心优化的K—Means聚类算法  被引次数:22
   李飞 薛彬 黄亚楼《计算机科学》,2002年第29卷第7期
   1.引言聚类分析(clustering)是人工智能研究的重要领域。聚类方法被广泛研究并应用于机器学习、统计分析、模式识别以及数据库数据挖掘与知识发现等不同的领域。各种聚类方法中,基于目标函数的K-Means聚类方法应用极为广泛,根据聚类结果的表达方式又可分为硬K-Means(HCM)算法、模糊K-Means算法(FCM)和概率K-Means算法(PCM)。各种K-Means算法都以确定的目标函数来测度聚类的效果,最佳的聚类效果对应于目标函数的极值点。由于目标函数局部极小值点的存在以及算法的贪心性,导致聚类结果对初始中心敏感,往往达不到全局最优。    

20.  网络社团挖掘算法  
   刘启刚  孙向阳  周丽《计算机应用》,2015年第Z1期
   针对K平均( K-means)、期望最大化( EM)等传统聚类算法在网络社团挖掘中存在的聚类结果不合理、容易陷入局部最小值等问题,以最小化社团间的连接权值为优化目标,基于节点间交互次数归一化结果建立节点间的相似矩阵,求出此矩阵对应的拉普拉斯矩阵,以拉普拉斯矩阵的前k个最小特征值对应的特征向量为基建立新的特征空间,将相似矩阵向新的特征空间做投影,在投影后的特征空间中运用K-means算法进行社团挖掘,实现目标函数的最小化。通过仿真实验对比,说明了该基于拉普拉斯矩阵的聚类方法( LMBC)比传统聚类方法更有效地解决聚类节点分布不均衡的问题,及非凸、高维数据集在保持原有几何结构的同时有效降维的问题。 LMBC从数据集相似矩阵的角度进行聚类分析,进一步丰富了流形学习的理论与方法,可广泛应用于社交网络分析及图像识别等领域。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号