共查询到18条相似文献,搜索用时 62 毫秒
1.
K-me doids聚类分析具有对孤立点敏感度较低和良好的鲁棒性等特点,但由于初始聚类中心的选取和中心点迭代更新等,聚类精度和效率较低.文中根据标准差体现数据离散程度,定义了初始中心点候选集,给出了一种基于标准差的K-medoids聚类算法.该算法首先利用标准差定义了初始中心点候选集,并采用逐步增加的方式确定初始中心点... 相似文献
2.
3.
为了对图数据库中的结构化数据有效的聚类分析,首先对不同的图数据样本进行特征的深度挖掘,构造了包含节点间连接层次关系的关联度矩阵,与拉普拉斯矩阵结合共同完成谱特征分析;然后利用高斯核函数进行相似度矩阵的构建,将相似度归一化到0到1的范围内便于后期处理;最后结合图分割与k-means算法将相似度矩阵进行k分割,得到k个聚类。经过大量分析实验表明,改进的拉普拉斯矩阵对样本内部结构有更为精细的划分,提高了前期样本处理效果。最小比率割算法在保证精度的前提下,将NP难的问题转化为多项式时间内解决的问题,提高了算法的效率。 相似文献
4.
无监督学习聚类算法的性能依赖于用户在输入数据集上指定的距离度量,该距离度量直接影响数据样本之间的相似性计算,因此,不同的距离度量往往对数据集的聚类结果具有重要的影响。针对谱聚类算法中距离度量的选取问题,提出一种基于边信息距离度量学习的谱聚类算法。该算法利用数据集本身蕴涵的边信息,即在数据集中抽样产生的若干数据样本之间是否具有相似性的信息,进行距离度量学习,将学习所得的距离度量准则应用于谱聚类算法的相似度计算函数,并据此构造相似度矩阵。通过在UCI标准数据集上的实验进行分析,结果表明,与标准谱聚类算法相比,该算法的预测精度得到明显提高。 相似文献
5.
在K-means算法中,聚类数k是影响聚类质量的关键因素之一。目前,已经提出了许多确定最佳k值的聚类有效性方法,但这些方法都不能很好地处理两种数据集:类(簇)密度不同的数据集和类间距比较小的数据集(含有合并簇的数据集)。为此,提出了一种新的聚类有效性函数,该函数定义为数据特征轴总长度的平方与最小类间距的比值,最佳聚类数为这个比值达到最小时对应的k值。同时,为减小K-means算法对噪声和孤立点数据的敏感性,使用了基于加权的改进K-平均的方法计算类中心。实验证明,与其他算法相比,基于新聚类有效性函数的K-wmeans算法不仅降低了噪声和孤立点数据对聚类结果的影响,而且能有效地处理上面提到的两种数据集,明显提高了数据聚类质量。 相似文献
6.
基于密度和对象方向聚类算法的改进 总被引:10,自引:1,他引:10
针对K-means算法所存在的问题进行了深入的研究,提出了基于密度和聚类对象方向的改进算法(KADD算法)。该算法采取聚类对象分布密度方法来确定初始聚类中心,然后根据对象的聚类方向来发现任意形状的簇。理论分析与实验结果表明,改进算法在不改变时间、空间复杂度的情况下能取得更好的聚类结果。 相似文献
7.
针对K-means算法所存在的问题进行了深入的研究,提出了基于密度和聚类对象方向的改进算法(KADD算法).该算法采取聚类对象分布密度方法来确定初始聚类中心,然后根据对象的聚类方向来发现任意形状的簇.理论分析与实验结果表明,改进算法在不改变时间、空间复杂度的情况下能取得更好的聚类结果. 相似文献
8.
基于信息熵的二元分割算法离散连续属性,在对连续属性较多,数据量较大的数据集进行分析预测中,存在不足。实验表明,在决策树算法中结合改进后的k-means算法作为连续属性离散化算法,在连续属性较多的数据实例中可以构造出更好的决策树。 相似文献
9.
针对传统谱聚类算法没有解决簇划分过程中,簇间交叉区域样本点对聚类效果有影响这个问题,提出一种基于局部协方差矩阵的谱聚类算法,主要介绍了一种新的计算样本之间相似度亲和矩阵的方法,即通过计算样本点之间的欧氏距离划分出小子集,计算小子集的协方差,通过设定阈值剔除交叉点,由剩下的点构造相似矩阵,对相似矩阵进行特征值分解,用经典的[k]-means算法对由特征向量组成的矩阵聚类。通过在Control等真实数据集上的实验结果表明,该算法在聚类准确率、标准互信息等指标上比较对比算法获得更优秀的效果。 相似文献
10.
在目前聚类方法中, k-means与势函数是最常用的算法,虽然两种算法有很多优点,但也存在自身的局限性。 k-means聚类算法:其聚类数目无法确定,需要提前进行预估,同时对初始聚类中心敏感,且容易受到异常点干扰;势函数聚类算法:其聚类区间范围有限,对多维数据进行聚类其效率低。针对以上两种算法的缺点,提出了一种基于 K-means 与势函数法的改进聚类算法。它首先采用势函数法确定聚类数目与初始中心,然后利用K-means法进行聚类,该改进算法具有势函数法“盲”特性及K-means法高效性的优点。实验对改进算法的有效性进行了验证,结果表明,改进算法在聚类精度及收敛速度方面有很大提高。 相似文献
11.
12.
K-means算法是聚类分析中的一种经典算法,但是K-means算法是一种局部搜索技术,受初始聚类中心的影响可能会过早收敛于最优解.而遗传算法具有良好的全局优化的能力,将遗传算法与K-means算法结合起来,能很好解决这一问题.在结合的过程中,又在最传统的遗传算法中改进染色体编码与适应度函数,从而优化k个中心点的选取,... 相似文献
13.
改进遗传算法的K-均值聚类算法研究 总被引:2,自引:0,他引:2
传统的k-均值算法对初始聚类中心的敏感很大,极易陷入局部最优值;利用遗传算法或免疫规划算法解决初始聚类中心是较好的方法,但后期容易出现收敛速度缓慢.为了克服上述缺点,文章将免疫原理的选择操作机制引入遗传算法中,使个体浓度和适应度同时对个体的选择施加影响,以此提出基于改进遗传算法的K-均值聚类算法,该方法利用K-均值算法的高效性和改进遗传算法的全局优化搜索能力,较好地解决了聚类中心优化问题.试验结果表明,本算法能够有效改善聚类质量,并且具有较好的收敛速度. 相似文献
14.
王杨 《计算机与数字工程》2014,42(9):1610-1612
利用粒子群优化(PSO)算法全局寻优的特点,很大程度上避免了模糊C-均值聚类(FCM)算法对初值敏感、易陷入局部收敛的缺陷.利用收敛速度快的K均值聚类法得到的聚类中心作为PSO算法初始聚类中心的参考,提出一种新的模糊C-均值聚类算法Improved PSO FCM.实验结果表明,论文算法提高了FCM的搜索能力,聚类更为准确,效率更高. 相似文献
15.
一种基于改进PSO的K—means优化聚类算法 总被引:1,自引:0,他引:1
针对传统的K—means算法对初始聚类中心的选取敏感、容易收敛到局部最优的缺点,提出一种基于改进粒子群优化算法(PSO)的K—means优化聚类算法。该算法利用PSO算法强大的全局搜索能力对初始聚类中心的选取进行优化:通过动态调整惯性权重等参数增强PSO算法的性能;利用群体适应度方差决定算法中前部分PSO算法和后部分K—means算法的转换时机;设置变量实时监控各个粒子和粒子群的最优值变化情况,及时地对出现早熟收敛的粒子进行变异操作,从而为K—means算法搜索到全局最优的初始聚类中心,使聚类结果不受初始聚类中心影响,易于获得全局最优解。实验结果表明文中提出的改进算法与传统聚类算法相比具有更高的聚类正确率、更好的聚类质量及全局搜索能力。 相似文献
16.
17.
基于数据场的改进DBSCAN聚类算法 总被引:1,自引:0,他引:1
DBSCAN(density based spatial clustering of applications with noise)算法是一种典型的基于密度的聚类算法。该算法可以识别任意形状的类簇,但聚类结果依赖于参数Eps和MinPts的选择,而且对于一些密度差别较大的数据集,可能得不到具有正确类簇个数的聚类结果,也可能将部分数据错分为噪声。为此,利用数据场能较好描述数据分布,反映数据关系的优势,提出了一种基于数据场的改进DBSCAN聚类算法。该算法引入平均势差的概念,在聚类过程中动态地确定每个类的Eps和平均势差,从而能够在一些密度相差较大的数据集上得到较好的聚类结果。实验表明,所提算法的性能优于DBSCAN算法。 相似文献
18.
空间数据挖掘是数据挖掘的一个研究分支。空间聚类分析是空间数据挖掘的一个重要的研究领域。传统的K-均值方法用于聚类具有收敛速度快、算法实现简单等特点,但容易陷入局部最优,并对初始解敏感。遗传算法是一种全局搜索算法,但是收敛速度较慢。提出一种改进的遗传算法进行聚类,该算法通过全局搜索与局部搜索相结合,取得较好效果。实验表明:文中提出的算法在聚类分析中搜索到全局最优解(或近似全局最优解)的能力要优于经典的K-均值聚类算法,且局部收敛速度和全局收敛性能较好。 相似文献