共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
粒子群算法及其在布局优化中的应用 总被引:3,自引:0,他引:3
复杂工程布局(如卫星舱布局)方案设计问题,在理论上属带性能约束的布局优化问题(NPC问题),很难求解。论文以卫星舱布局为例,将粒子群算法(PSO)应用于布局问题,构造此类问题的粒子表达方法,建立了此类问题的粒子群算法。文中通过3个算例(其中一个为已知最优解的算例)的数值计算,验证了该算法的可行性和有效性。 相似文献
3.
基于自适应粒子群算法的约束布局优化研究 总被引:1,自引:0,他引:1
二维带平衡及不干涉约束的圆集在圆容器内的布局优化问题(如卫星舱布局)在理论上属于带性能约束的布局优化M题,它是NP—hard问题的难点,由于它的复杂性,传统的粒子群优化算法难于求解.通过对传统的粒子群优化算法的多重改进,提出了一种自适应粒子群优化算法,该算法在整个搜索过程中,既能保持粒子群原有基本结构,同时又能扩大搜索范围,在提高多样性的同时保证搜索精度,从而加快了收敛速度,有效避免早熟收敛问题,得到最优解.将改进后的算法应用于约束布局问题,建立了此类问题的粒子群算法,通过3个算例的数值计算,验证了该算法的可行性和有效性. 相似文献
4.
基于带变异算子粒子群优化算法的约束布局优化研究 总被引:39,自引:0,他引:39
该文研究二维带平衡及不干涉约束的圆集在圆容器内的布局优化问题(如卫星舱布局),属于NP-Hard问题,难于求解.文章提出了带变异算子的PSO算法(PSO with Mutation Operator),在算法搜索的后期引入变异算子,使算法摆脱后期易于陷入局部极优点的束缚,同时又保持前期搜索速度快的特性.将改进后的算法应用于约束布局问题,建立了此类问题的粒子群算法,并进行了3个算例(其中一个为已知最优解的算例)的数值计算,验证了带变异算子PSO算法在约束布局问题上的可行性和有效性. 相似文献
5.
带变异算子的粒子群优化算法 总被引:30,自引:5,他引:30
针对PSO算法存在易陷入局部最优点的缺点,该文提出了带变异算子的PSO算法。在算法搜索的后期引入变异算子,使算法摆脱后期易于陷入局部极优点的束缚,同时又保持前期搜索速度快的特性。通过对三个多峰的测试函数和一个问题空间为非凸集的实例所做的对比实验,表明改进的PSO算法增强了全局搜索能力,搜索成功率得到大大提高,克服了基本PSO易于收敛到局部最优点的缺点。 相似文献
6.
基于粒子群优化算法的电力系统无功优化 总被引:1,自引:0,他引:1
针对粒子群优化算法在进化中随种群多样性降低易出现早熟收敛等问题,结合全局-局部最优模型,提出一种改进的全局-局部参数最优粒子群优化算法。利用全局-局部最优惯性权重及全局-局部最优加速度常数,简化速度更新方程,使算法性能得到改善。将该算法应用于电力系统无功优化中,仿真结果表明,网损平均值更低,寻优性能更好,优化的网损值集中在较小的区间。 相似文献
7.
新型分阶段粒子群优化算法 总被引:1,自引:0,他引:1
针对粒子群优化算法的“早熟”问题,提出了一种新型分阶段粒子群优化算法。该算法通过调整惯性权重和加速系数使粒子自组织地跟踪局部吸引域和全局吸引域来扩大粒子的搜索空间和提高粒子的收敛精度,同时根据粒子处于不同的阶段实施相应的变异策略来增加种群的多样性。通过经典函数的测试结果表明,新算法的全局搜索能力有了显著提高,并且能够有效避免早熟问题。 相似文献
8.
9.
龚国斌 《计算机工程与应用》2013,49(9):50-53
提出一种混合粒子群优化算法用于求解约束优化问题。新算法的主要特点是:在搜索机制方面,利用混沌初始化种群以提高初始群体的质量。为了扩大粒子的搜索范围,引入柯西变异算子。利用单形交叉算子对种群进行局部搜索。在约束处理技术方面,根据当前种群中可行解比例自适应地选择不同的个体比较准则。数值实验结果表明了该算法的有效性。 相似文献
10.
提出了一种改进的基于粒子群算法的优化布局算法(Improved Particle Swarm Optimization,IPSO)来替换原有的基于模拟退火(Simulated Annealing,SA)算法的优化布局算法,使其更加适用于大型三维片上网络的仿真。通过比较这两种算法的基本思想,给出了这两种算法的实现步骤并详细介绍了IPSO算法的改进思路。最后利用一款现有的三维片上网络仿真器进行了仿真验证。结果表明,提出的IPSO算法比原来的SA算法更适用于大型三维片上网络的仿真。 相似文献
11.
提出了一种动态调整加速因子的微粒群优化算法。针对微粒群算法中不同搜索时期的微粒所需要的搜索能力不同,引入余弦函数来动态调整加速因子,平衡算法的全局和局部搜索能力。利用三个Benchmark函数进行数值试验,仿真结果表明,算法稳定,具有较好的收敛性能, 相似文献
12.
提出了一种动态调整加速因子的微粒群优化算法。针对微粒群算法中不同搜索时期的微粒所需要的搜索能力不同,引入余弦函数来动态调整加速因子,平衡算法的全局和局部搜索能力。利用三个Benchmark函数进行数值试验,仿真结果表明,算法稳定,具有较好的收敛性能。 相似文献
13.
本文介绍了粒子群优化算法PSO中的多目标优化的粒子群算法及其应用,并将其运用在防守对方多个前锋球员的进攻威胁,以粒子群算法随机性来适应不断变化的形势。 相似文献
14.
以保证全局收敛的随机微粒群算法为基础,文章提出了一种双群体随机微粒群算法——DB-SPSO。该方法采用两个群体同时进化,一个群体在进化过程中所出现的停止微粒由另一群体的微粒来代替,并和此群体中其余的微粒一起继续进化。通过对此算法的参数适用范围及收敛率进行讨论,给出了此算法的适用范围。其仿真结果表明:对于单峰函数和多峰函数,此算法都能够取得较好的优化效果。 相似文献
15.
16.
17.
基于粒子群优化算法的系统可靠性优化 总被引:1,自引:0,他引:1
刘家骏 《计算机与数字工程》2012,40(4):6-7,14
系统可靠性优化问题是典型的NP难题,建立了可靠性冗余优化模型,采用粒子群优化算法对其进行求解。通过对其它文献中仿真实例的计算和结果对比,表明了算法对求解可靠性优化问题的可行性和有效性。 相似文献
18.
粒子群优化的两种改进策略 总被引:25,自引:1,他引:25
粒子群优化方法(particle swarm optimization,PSO)是由Kennedy和Eberhart于1995年提出的,并成功应用于各类优化问题.通过对PSO方法深入分析,把模拟退火和分工两种机制引入到PSO方法中,提出了模拟退火粒子群优化(PSOwSAPSO with simulated annealing)和有分工策略的粒子群优化(PSOwDOWPSO with division of work),两种不同改进方法,详细阐述了这两种方法的主要思想.测试结果表明,这两种改进方法能够克服传统PSO方法中的不足,增强了粒子群的优化能力. 相似文献
19.
李剑 《计算机与数字工程》2009,37(7):13-16
为了提高微粒群算法优化高维目标的性能,采用了个体惯性权重自适应调整的微粒群算法,其中每个微粒拥有属于个体的惯性权重。通过对每个微粒的适应值进行评价对惯性权重动态和自适应,以加快其收敛速度并逃离局部最优。为了增强搜索性能,基于高斯变异和随机变异的变异算子被引入。该方法以及其他3种不同微粒群优化算法对4个经典函数在100、200和400维数下进行仿真的结果比较证明此算法在解决高维数目标时具有良好性能。 相似文献
20.
一种基于粒子群优化的多目标优化算法 总被引:5,自引:2,他引:5
论文提出了一种基于粒子群的多目标优化算法,该算法采用Pareto支配关系来更新粒子的个体最优值和局部最优值,用存储池保存搜索过程中发现的非支配解;采用聚类算法裁剪非支配解,以保持解的分布性能;采用动态惯性权重法来平衡粒子群对解空间的局部搜索和全局搜索,以提高算法的全局收敛性能。实验结果表明,论文算法是有效的,能有效的求解多种多目标优化问题。 相似文献