首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
目的 在传统车辆目标检测问题中,需要针对不同图像场景选择适合的特征。为此提出一种基于快速区域卷积神经网络(Fast R-CNN)的场景图像车辆目标发现方法,避免传统车辆目标检测问题中需要设计手工特征的问题。方法 该方法基于深度学习卷积神经网络思想。首先使用待检测车辆图像定义视觉任务。利用选择性搜索算法获得样本图像的候选区域,将候选区域坐标与视觉任务示例图像一起输入网络学习。示例图像经过深度卷积神经网络中的卷积层,池化层计算,最终得到深度卷积特征。在输入时没有规定示例图像的规格,此时得到的卷积特征规格不定。然后,基于Fast R-CNN网络结构,通过感兴趣区域池化层规格化特征,最后将特征输入不同的全连接分支,并行回归计算特征分类,以及检测框坐标值。经过多次迭代训练,最后得到与指定视觉任务强相关的目标检测模型,具有训练好的权重参数。在新的场景图像中,可以通过该目标检测模型检测给定类型的车辆目标。结果 首先确定视觉任务包含公交车,小汽车两类,背景场景是城市道路。利用与视觉任务强相关的测试样本集对目标检测模型进行测试,实验表明,当测试样本场景与视觉任务相关度越高,且样本中车辆目标的形变越小,得到的车辆目标检测模型对车辆目标检测具有良好的检测效果。结论 本文提出的车辆目标检测方法,利用卷积神经网络提取卷积特征代替传统手工特征提取过程,通过Fast R-CNN对由示例图像组成定义的视觉任务训练得到了效果良好的车辆目标检测模型。该模型可以对与视觉任务强相关新场景图像进行效果良好的车辆目标检测。本文结合深度学习卷积神经网络思想,利用卷积特征替代传统手工特征,避免了传统检测问题中特征选择问题。深层卷积特征具有更好的表达能力。基于Fast R-CNN网络,最终通过多次迭代训练得到车辆检测模型。该检测模型对本文规定的视觉任务有良好的检测效果。本文为解决车辆目标检测问题提供了更加泛化和简洁的解决思路。  相似文献   

2.
遥感图像飞机目标分类的卷积神经网络方法   总被引:2,自引:0,他引:2       下载免费PDF全文
目的 遥感图像飞机目标分类,利用可见光遥感图像对飞机类型进行有效区分,对提供军事作战信息有重要意义。针对该问题,目前存在一些传统机器学习方法,但这些方法需人工提取特征,且难以适应真实遥感图像的复杂背景。近年来,深度卷积神经网络方法兴起,网络能自动学习图像特征且泛化能力强,在计算机视觉各领域应用广泛。但深度卷积神经网络在遥感图像飞机分类问题上应用少见。本文旨在将深度卷积神经网络应用于遥感图像飞机目标分类问题。方法 在缺乏公开数据集的情况下,收集了真实可见光遥感图像中的8种飞机数据,按大致4∶1的比例分为训练集和测试集,并对训练集进行合理扩充。然后针对遥感图像与飞机分类的特殊性,结合深度学习卷积神经网络相关理论,有的放矢地设计了一个5层卷积神经网络。结果 首先,在逐步扩充的训练集上分别训练该卷积神经网络,并分别用同一测试集进行测试,实验表明训练集扩充有利于网络训练,测试准确率从72.4%提升至97.2%。在扩充后训练集上,分别对经典传统机器学习方法、经典卷积神经网络LeNet-5和本文设计的卷积神经网络进行训练,并在同一测试集上测试,实验表明该卷积神经网络的分类准确率高于其他两种方法,最终能在测试集上达到97.2%的准确率,其余两者准确率分别为82.3%、88.7%。结论 在少见使用深度卷积神经网络的遥感图像飞机目标分类问题上,本文设计了一个5层卷积神经网络加以应用。实验结果表明,该网络能适应图像场景,自动学习特征,分类效果良好。  相似文献   

3.
目的 火焰检测可有效防止火灾的发生。针对目前火焰检测方法,传统图像处理技术的抗干扰能力差、泛化性不强,检测效果对数据波动比较敏感;机器学习方法需要根据不同的场景设定并提取合适火焰的特征,过程比较繁琐。为此提出一种基于Faster R-CNN的多类型火焰检测方法,避免复杂的人工特征提取工作,在面对复杂背景、光照强度变化和形态多样的火焰图像时依然保证较好的检测精度。方法 基于深度学习的思想,利用卷积神经网络自动学习获取图像特征。首先,利用自建数据集构建视觉任务。根据火焰的尖角特性、直观形态和烟雾量等,将火焰类数据划分为单尖角火焰、多尖角火焰和无规则火焰3类。此外,通过深度网络特征可视化实验发现,人造光源与火焰在轮廓上具有一定的相似性,为此建立了人造光源圆形和方形两个数据集作为干扰项来保证检测模型的稳定性;然后,细化训练参数并调整预训练的卷积神经网络结构,改动分类层以满足特定视觉任务。将经过深度卷积神经网络中卷积层和池化层抽象得到的图像特征送入区域生成网络进行回归计算,利用迁移学习的策略得到每一类目标物体相应的探测器;最后,得到与视觉任务相关的目标检测模型,保存权重和偏置参数。并联各类目标物体的子探测器作为整体探测器使用,检测时输出各类探测器的分数,得分最高的视为正确检测项。结果 首先,利用训练好的各探测器与相应测试集样本进行测试,然后,再利用各类目标物的测试集来测试其他类探测器的检测效果,以此证明各探测器之间的互异性。实验结果表明,各类探测器都具有较高的专一性,大大降低了误判的可能性,对于形变剧烈和复杂背景的火焰图像也具有良好的检测准确率。训练得到的检测模型在应对小目标、多目标、形态多样、复杂背景和光照变化等检测难度较大的情况时,均能获得很好的效果,测试集结果表明各类探测器的平均准确率提高了3.03% 8.78%不等。结论 本文提出的火焰检测方法,通过挖掘火焰的直观形态特征,细分火焰类别,再利用深度卷积神经网络代替手动特征设置和提取过程,结合自建数据集和根据视觉任务修改的网络模型训练得到了检测效果良好的多类型火焰检测模型。利用深度学习的思想,避免了繁琐的人工特征提取工作,在得到较好的检测效果的同时,也保证了模型具有较强的抗干扰能力。本文为解决火焰检测问题提供了更加泛化和简洁的解决思路。  相似文献   

4.
目的 细粒度车型识别旨在通过任意角度及场景下的车辆外观图像识别出其生产厂家、品牌型号、年款等信息,在智慧交通、安防等领域具有重要意义。针对该问题,目前主流方法已由手工特征提取向卷积神经网络为代表的深度学习方法过渡。但该类方法仍存在弊端,首先是识别时须指定车辆的具体位置,其次是无法充分利用细粒度目标识别其视觉差异主要集中在关键的目标局部的特点。为解决这些问题,提出基于区域建议网络的细粒度识别方法,并成功应用于车型识别。方法 区域建议网络是一种全卷积神经网络,该方法首先通过卷积神经网络提取图像深层卷积特征,然后在卷积特征上滑窗产生区域候选,之后将区域候选的特征经分类层及回归层得到其为目标的概率及目标的位置,最后将这些区域候选通过目标检测网络获取其具体类别及目标的精确位置,并通过非极大值抑制算法得到最终识别结果。结果 该方法在斯坦福BMW-10数据集的识别准确率为76.38%,在斯坦福Cars-196数据集识别准确率为91.48%,不仅大幅领先于传统手工特征方法,也取得了与目前最优的方法相当的识别性能。该方法同时在真实自然场景中取得了优异的识别效果。结论 区域建议网络不仅为目标检测提供了目标的具体位置,而且提供了具有区分度的局部区域,为细粒度目标识别提供了一种新的思路。该方法克服了传统目标识别对于目标位置的依赖,并且能够实现一图多车等复杂场景下的车型细粒度识别,具有更好的鲁棒性及实用性。  相似文献   

5.
深度卷积神经网络特征提取用于地表覆盖分类初探   总被引:4,自引:0,他引:4       下载免费PDF全文
目的 地表覆盖监测是生态环境变化研究、土地资源管理和可持续发展的重要基础,在全球资源监测、全球变化检测中发挥着重要作用。提高中等分辨率遥感影像地表覆盖分类的精度具有非常重要的意义。方法 近年来,深度卷积神经网络在图像分类、目标检测和图像语义分割等领域取得了一系列突破性的进展,相比于传统的机器学习方法具有更强的特征学习和特征表达能力。基于其优越的特性,本文进行了深度卷积神经网络对中分辨率遥感影像进行特征提取和分类的探索性研究。以GF-1的16 m空间分辨率多光谱影像为实验数据,利用预训练好的AlexNet深度卷积神经网络模型进行特征提取,以SVM为分类器进行分类。分析了AlexNet不同层的特征以及用于提取特征的邻域窗口尺寸对分类结果的影响,并与传统的单纯基于光谱特征和基于光谱+纹理特征的分类结果进行对比分析。结果 结果表明在用AlexNet模型提取特征进行地表覆盖分类时,Fc6全连接层是最有效的特征提取层,最佳的特征提取窗口尺寸为9×9像素,同时利用深度特征得到的总体分类精度要高于其他两种方法。结论 深度卷积神经网络可以提取更精细更准确的地表覆盖特征,得到更高的地表覆盖分类精度,为地表覆盖分类提供了参考价值。  相似文献   

6.
目的 随着自动驾驶技术不断引入生活,机器视觉中道路场景分割算法的研究已至关重要。传统方法中大多数研究者使用机器学习方法对阈值分割,而近年来深度学习的引入,使得卷积神经网络被广泛应用于该领域。方法 针对传统阈值分割方法难以有效提取多场景下道路图像阈值的问题和直接用深度神经网络来训练数据导致过分割严重的问题,本文提出了结合KSW(key seat wiper)和全卷积神经网络(FCNN)的道路场景分割方法,该方法结合了KSW熵法及遗传算法,利用深度学习在不同场景下的特征提取,并将其运用到无人驾驶技术的道路分割中。首先对道路场景测试集利用KSW熵法及遗传算法得到训练集,然后导入到全卷积神经网络中进行训练得到有效训练模型,最后通过训练模型实现对任意一幅道路场景图分割。结果 实验结果表明,在KITTI数据集中进行测试,天空和树木的分割精度分别达到91.3%和94.3%,道路、车辆、行人的分割精度提高了2%左右。从分割结果中明显看出,道路图像中的积水、泥潭、树木等信息存在的过分割现象有良好的改观。结论 相比传统机器学习道路场景分割方法,本文方法在一定程度上提高了分割精度。对比深度学习直接应用于道路场景分割的方法,本文方法在一定程度上避免了过分割现象,提高了模型的鲁棒性。综上所述,本文提出的结合KSW和FCNN的道路场景分割算法有广泛的研究前景,有望应用于医学图像和遥感图像的处理中。  相似文献   

7.
目的 针对高分辨率遥感影像舰船检测受云雾、海浪以及海岛等复杂因素干扰,存在虚警率高、漏检率高、目标检测和识别困难等问题,提出一种联合视觉显著性特征与卷积神经网络的海面舰船目标检测方法。方法 基于频率域相位谱显著性检测能够有效抑制高分辨率遥感影像上云层、海面杂波干扰的特点,计算影像多尺度显著图并进行加权融合。采用对数变换对融合后的图像进行空间域灰度增强以提高目标与背景的区分度,利用灰度形态学闭运算填充舰船目标孔洞,采用大津分割法来提取疑似舰船目标作为兴趣区域。最后构建舰船样本库,利用迁移学习的思想训练卷积神经网络模型,对所有兴趣区域切片进行分类判断和识别,得到最终检测结果。结果 利用多幅不同背景下的高分辨率遥感影像,分别从视觉显著性检测、舰船粗检测与船只类型识别3个方面进行实验验证,选取检测率、虚警率、识别率3个指标进行定量评价。结果表明,本文方法相比于其他方法能有效排除云雾、海岛等多种因素的干扰,检测率、虚警率、识别率分别为93.63%、3.01%、90.09%,明显优于其他算法,能够实现大范围影像上多种类型舰船的快速准确检测和识别。结论 本文将图像视觉显著性检测快速获取图像显著目标的特点与卷积神经网络在图像分类的优势相结合,应用于遥感影像的海域舰船目标检测,能够实现对复杂背景下舰船目标的检测和船只类型的精细化识别。  相似文献   

8.
目的 通过深度学习卷积神经网络进行3维目标检测的方法已取得巨大进展,但卷积神经网络提取的特征既缺乏不同区域特征的依赖关系,也缺乏不同通道特征的依赖关系,同时难以保证在无损空间分辨率的情况下扩大感受野。针对以上不足,提出了一种结合混合域注意力与空洞卷积的3维目标检测方法。方法 在输入层融入空间域注意力机制,变换输入信息的空间位置,保留需重点关注的区域特征;在网络中融入通道域注意力机制,提取特征的通道权重,获取关键通道特征;通过融合空间域与通道域注意力机制,对特征进行混合空间与通道的混合注意。在特征提取器的输出层融入结合空洞卷积与通道注意力机制的网络层,在不损失空间分辨率的情况下扩大感受野,根据不同感受野提取特征的通道权重后进行融合,得到全局感受野的关键通道特征;引入特征金字塔结构构建特征提取器,提取高分辨率的特征图,大幅提升网络的检测性能。运用基于二阶段的区域生成网络,回归定位更准确的3维目标框。结果 KITTI(A project of Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago)数据集中的实验结果表明,在物体被遮挡的程度由轻到高时,对测试集中的car类别,3维目标检测框的平均精度AP3D值分别为83.45%、74.29%、67.92%,鸟瞰视角2维目标检测框的平均精度APBEV值分别为89.61%、87.05%、79.69%; 对pedestrian和cyclist 类别,AP3DAPBEV值同样比其他方法的检测结果有一定优势。结论 本文提出的3维目标检测网络,一定程度上解决了3维检测任务中卷积神经网络提取的特征缺乏视觉注意力的问题,从而使3维目标检测更有效地运用于室外自动驾驶。  相似文献   

9.
自适应增强卷积神经网络图像识别   总被引:2,自引:0,他引:2       下载免费PDF全文
目的 为了进一步提高卷积神经网络的收敛性能和识别精度,增强泛化能力,提出一种自适应增强卷积神经网络图像识别算法。方法 构建自适应增强模型,分析卷积神经网络分类识别过程中误差产生的原因和误差反馈模式,针对分类误差进行有目的地训练,实现分类特征基于迭代次数和识别结果的自适应增强以及卷积神经网络权值的优化调整。自适应增强卷积神经网络与多种算法在收敛速度和识别精度等性能上进行对比,并在多种数据集上检测自适应卷积神经网络的泛化能力。结果 通过对比实验可知,自适应增强卷积神经网络算法可以在很大程度上优化收敛效果,提高收敛速度和识别精度,收敛时在手写数字数据集上的误识率可降低20.93%,在手写字母和高光谱图像数据集上的误识率可降低11.82%和15.12%;与不同卷积神经网络优化算法对比,误识率比动态自适应池化算法和双重优化算法最多可降低58.29%和43.50%;基于不同梯度算法的优化,误识率最多可降低33.11%;与不同的图像识别算法对比,识别率也有较大程度提高。结论 实验结果表明,自适应增强卷积神经网络算法可以实现分类特征的自适应增强,对收敛性能和识别精度有较大的提高,对多种数据集有较强的泛化能力。这种自适应增强模型可以进一步推广到其他与卷积神经网络相关的深度学习算法中。  相似文献   

10.
目的 在室内场景语义分割任务中,深度信息会在一定程度上提高分割精度。但是如何更有效地利用深度信息仍是一个开放性问题。当前方法大都引入全部深度信息,然而将全部深度信息和视觉特征组合在一起可能对模型产生干扰,原因是仅依靠视觉特征网络模型就能区分的不同物体,在引入深度信息后可能产生错误判断。此外,卷积核固有的几何结构限制了卷积神经网络的建模能力,可变形卷积(deformable convolution,DC)在一定程度上缓解了这个问题。但是可变形卷积中产生位置偏移的视觉特征空间深度信息相对不足,限制了进一步发展。基于上述问题,本文提出一种深度信息引导的特征提取(depth guided feature extraction,DFE)模块。方法 深度信息引导的特征提取模块包括深度信息引导的特征选择模块(depth guided feature selection,DFS)和深度信息嵌入的可变形卷积模块(depth embedded deformable convolution,DDC)。DFS可以筛选出关键的深度信息,自适应地调整深度信息引入视觉特征的比例,在网络模型需要时将深度信息嵌入视觉特征。DDC在额外深度信息的引入下,增强了可变形卷积的特征提取能力,可以根据物体形状提取更相关的特征。结果 为了验证方法的有效性,在NYUv2(New York University Depth Dataset V2)数据集上进行一系列消融实验并与当前最好的方法进行比较,使用平均交并比(mean intersection over union,mIoU)和平均像素准确率(pixel accuracy,PA)作为度量标准。结果显示,在NYUv2数据集上,本文方法的mIoU和PA分别为51.9%和77.6%,实现了较好的分割效果。结论 本文提出的深度信息引导的特征提取模块,可以自适应地调整深度信息嵌入视觉特征的程度,更加合理地利用深度信息,且在深度信息的作用下提高可变形卷积的特征提取能力。此外,本文提出的深度信息引导的特征提取模块可以比较方便地嵌入当下流行的特征提取网络中,提高网络的建模能力。  相似文献   

11.
随着深度学习技术的发展以及卷积神经网络在众多计算机视觉任务中的突出表现,基于卷积神经网络的深度显著性检测方法成为显著性检测领域的主流方法。但是,卷积神经网络受卷积核尺寸的限制,在网络底层只能在较小范围内提取特征,不能很好地检测区域内不显著但全局显著的对象;其次,卷积神经网络通过堆叠卷积层的方式可获得图像的全局信息,但在信息由浅向深传递时,会导致信息遗失,同时堆叠太深也会导致网络难以优化。基于此,提出一种基于多特征融合卷积神经网络的显著性检测方法。使用多个局部特征增强模块和全局上下文建模模块对卷积神经网络进行增强,利用局部特征增强模块增大特征提取范围的同时,采用全局上下文建模获得特征图的全局信息,有效地抑制了区域内显著而全局不显著的物体对显著性检测的干扰; 能够同时提取多尺度局部特征和全局特征进行显著性检测,有效地提升了检测结果的准确性。最后,通过实验对所提方法的有效性进行验证并和其它11种显著性检测方法进行对比,结果表明所提方法能提升显著性检测结果的准确性且优于参与比较的11种方法。  相似文献   

12.
目的 传统显著性检测模型大多利用手工选择的中低层特征和先验信息进行物体检测,其准确率和召回率较低,随着深度卷积神经网络的兴起,显著性检测得以快速发展。然而,现有显著性方法仍存在共性缺点,难以在复杂图像中均匀地突显整个物体的明确边界和内部区域,主要原因是缺乏足够且丰富的特征用于检测。方法 在VGG(visual geometry group)模型的基础上进行改进,去掉最后的全连接层,采用跳层连接的方式用于像素级别的显著性预测,可以有效结合来自卷积神经网络不同卷积层的多尺度信息。此外,它能够在数据驱动的框架中结合高级语义信息和低层细节信息。为了有效地保留物体边界和内部区域的统一,采用全连接的条件随机场(conditional random field,CRF)模型对得到的显著性特征图进行调整。结果 本文在6个广泛使用的公开数据集DUT-OMRON(Dalian University of Technology and OMRON Corporation)、ECSSD(extended complex scene saliency dataset)、SED2(segmentation evalution database 2)、HKU、PASCAL-S和SOD(salient objects dataset)上进行了测试,并就准确率—召回率(precision-recall,PR)曲线、F测度值(F-measure)、最大F测度值、加权F测度值和均方误差(mean absolute error,MAE)等性能评估指标与14种最先进且具有代表性的方法进行比较。结果显示,本文方法在6个数据集上的F测度值分别为0.696、0.876、0.797、0.868、0.772和0.785;最大F测度值分别为0.747、0.899、0.859、0.889、0.814和0.833;加权F测度值分别为0.656、0.854、0.772、0.844、0.732和0.762;MAE值分别为0.074、0.061、0.093、0.049、0.099和0.124。无论是前景和背景颜色相似的图像集,还是多物体的复杂图像集,本文方法的各项性能均接近最新研究成果,且优于大多数具有代表性的方法。结论 本文方法对各种场景的图像显著性检测都具有较强的鲁棒性,同时可以使显著性物体的边界和内部区域更均匀,检测结果更准确。  相似文献   

13.
目的 图像的显著性目标检测是计算机视觉领域的重要研究课题。针对现有显著性目标检测结果存在的纹理细节刻画不明显和边缘轮廓显示不完整的问题,提出一种融合多特征与先验信息的显著性目标检测方法,该方法能够高效而全面地获取图像中的显著性区域。方法 首先,提取图像感兴趣的点集,计算全局对比度图,利用贝叶斯方法融合凸包和全局对比度图获得对比度特征图。通过多尺度下的颜色直方图得到颜色空间图,根据信息熵定理计算最小信息熵,并将该尺度下的颜色空间图作为颜色特征图。通过反锐化掩模方法提高图像清晰度,利用局部二值算子(LBP)获得纹理特征图。然后,通过图形正则化(GR)和流行排序(MR)算法得到中心先验图和边缘先验图。最后,利用元胞自动机融合对比度特征图、颜色特征图、纹理特征图、中心先验图和边缘先验图获得初级显著图,再通过快速引导滤波器优化处理得到最终显著图。结果 在2个公开的数据集MSRA10K和ECSSD上验证本文算法并与12种具有开源代码的流行算法进行比较,实验结果表明,本文算法在准确率-召回率(PR)曲线、受试者工作特征(ROC)曲线、综合评价指标(F-measure)、平均绝对误差(MAE)和结构化度量指标(S-measure)等方面有显著提升,整体性能优于对比算法。结论 本文算法充分利用了图像的对比度特征、颜色特征、纹理特征,采用中心先验和边缘先验算法,在全面提取显著性区域的同时,能够较好地保留图像的纹理信息和细节信息,使得边缘轮廓更加完整,满足人眼的层次要求和细节要求,并具有一定的适用性。  相似文献   

14.
目的 青光眼是导致失明的主要疾病之一,视盘区域的形状、大小等参数是青光眼临床诊断的重要指标。然而眼底图像通常亮度低、对比度弱,且眼底结构复杂,各组织以及病灶干扰严重。为解决上述问题,实现视盘的精确检测,提出一种视觉显著性的眼底图像视盘检测方法。方法 首先,依据视盘区域显著的特点,采用一种基于视觉显著性的方法对视盘区域进行定位;其次,采用全卷积神经网络(fully convolutional neural network,FCN)预训练模型提取深度特征,同时计算视盘区域的平均灰度,进而提取颜色特征;最后,将深度特征、视盘区域的颜色特征和背景先验信息融合到单层元胞自动机(single-layer cellular automata,SCA)中迭代演化,实现眼底图像视盘区域的精确检测。结果 在视网膜图像公开数据集DRISHTI-GS、MESSIDOR和DRIONS-DB上对本文算法进行实验验证,平均相似度系数分别为0.965 8、0.961 6和0.971 1;杰卡德系数分别为0.934 1、0.922 4和0.937 6;召回率系数分别为0.964 8、0.958 9和0.967 4;准确度系数分别为0.996 6、0.995 3和0.996 8,在3个数据集上均可精确地检测视盘区域。实验结果表明,本文算法精确度高,鲁棒性强,运算速度快。结论 本文算法能够有效克服眼底图像亮度低、对比度弱及血管、病灶等组织干扰的影响,在多个视网膜图像公开数据集上进行验证均取得了较好的检测结果,具有较强的泛化性,可以实现视盘区域的精确检测。  相似文献   

15.
目的 现有的显著对象检测模型能够很好地定位显著对象,但是在获得完整均匀的对象和保留清晰边缘的任务上存在不足。为了得到整体均匀和边缘清晰的显著对象,本文提出了结合语义辅助和边缘特征的显著对象检测模型。方法 模型利用设计的语义辅助特征融合模块优化骨干网的侧向输出特征,每层特征通过语义辅助选择性融合相邻的低层特征,获得足够的结构信息并增强显著区域的特征强度,进而检测出整体均匀的显著对象。通过设计的边缘分支网络以及显著对象特征得到精确的边缘特征,将边缘特征融合到显著对象特征中,加强特征中显著对象边缘区域的可区分性,以便检测出清晰的边缘。同时,本文设计了一个双向多尺度模块来提取网络中的多尺度信息。结果 在4种常用的数据集ECSSD (extended complex scene saliency dataset)、DUT-O (Dalian University of Technology and OMRON Corporation)、HKU-IS和DUTS上与12种较流行的显著模型进行比较,本文模型的最大F值度量(max F-measure,MaxF)和平均绝对误差(mean absolution error,MAE)分别是0.940、0.795、0.929、0.870和0.041、0.057、0.034、0.043。从实验结果看,本文方法得到的显著图更接近真值图,在MaxF和MAE上取得最佳性能的次数多于其他12种方法。结论 本文提出的结合语义辅助和边缘特征的显著对象检测模型十分有效。语义辅助特征融合和边缘特征的引入使检测出的显著对象更为完整均匀,对象的边缘区分性也更强,多尺度特征提取进一步改善了显著对象的检测效果。  相似文献   

16.
目的 复杂热红外监控场景中的行人检测问题是计算机视觉领域的重要研究内容之一,是公共安全、灾难救援以及智慧城市等实际应用中的重要基础任务。现今的热红外行人检测算法大多依据图像中人体目标的灰度值高于场景环境这一假设,导致当环境温度升高热红外图像发生灰度值反转时行人检测率较低。为提高行人检测系统在不同场景中的鲁棒性以及行人目标检测率,提出一种面向热红外监控场景的基于频域显著性检测的全卷积网络行人目标检测算法。方法 该算法首先对热红外图像进行基于频域的显著性检测,生成对行人目标全覆盖的显著图;然后结合热红外原图像生成感兴趣区域图作为输入,以行人目标概率图为输出,搭建全卷积网络;最后,对热红外行人检测系统进行端对端训练,获取网络输出的行人目标概率图,进而实现行人目标检测。结果 论文使用俄亥俄州立大学建立的红外视频数据集OTCBVS中的OSU热红外行人数据库对算法进行验证,与目前5种较为成熟的算法进行对比。实验结果表明,本文算法可以在各种场景中准确检测出行人目标,以MR-FP(丢失率—假阳率)为对比依据,本文算法7%的平均丢失率低于其他算法,具有更高的检测率,对热红外图像中的灰度值反转问题具有更好的鲁棒性。结论 本文提出一种面向热红外监控场景的基于频域显著性检测的全卷积网络行人目标检测算法,在实现检测算法端对端训练的同时,提高了其对各种复杂场景的鲁棒性以及行人目标检测率,提升热红外监控系统中行人目标检测性能。  相似文献   

17.
目的 显著性检测是图像和视觉领域一个基础问题,传统模型对于显著性物体的边界保留较好,但是对显著性目标的自信度不够高,召回率低,而深度学习模型对于显著性物体的自信度高,但是其结果边界粗糙,准确率较低。针对这两种模型各自的优缺点,提出一种显著性模型以综合利用两种方法的优点并抑制各自的不足。方法 首先改进最新的密集卷积网络,训练了一个基于该网络的全卷积网络(FCN)显著性模型,同时选取一个现有的基于超像素的显著性回归模型,在得到两种模型的显著性结果图后,提出一种融合算法,融合两种方法的结果以得到最终优化结果,该算法通过显著性结果Hadamard积和像素间显著性值的一对一非线性映射,将FCN结果与传统模型的结果相融合。结果 实验在4个数据集上与最新的10种方法进行了比较,在HKU-IS数据集中,相比于性能第2的模型,F值提高了2.6%;在MSRA数据集中,相比于性能第2的模型,F值提高了2.2%,MAE降低了5.6%;在DUT-OMRON数据集中,相比于性能第2的模型,F值提高了5.6%,MAE降低了17.4%。同时也在MSRA数据集中进行了对比实验以验证融合算法的有效性,对比实验结果表明提出的融合算法改善了显著性检测的效果。结论 本文所提出的显著性模型,综合了传统模型和深度学习模型的优点,使显著性检测结果更加准确。  相似文献   

18.
目的 基于全卷积网络(FCN)模型的显著性检测(SOD)的研究认为,更大的解码网络能实现比小网络更好的检测效果,导致解码阶段参数量庞大。视觉注意力机制一定程度上缓解了模型过大的问题。本文将注意力机制分为强、弱注意力两种:强注意力能为解码提供更强的先验,但风险很大;相反,弱注意力机制风险更小,但提供的先验较弱;基于此提出并验证了采用弱注意力的小型网络架构也能达到大网络的检测精度这一观点。方法 本文设计了全局显著性预测和基于弱注意力机制的边缘优化两个阶段,其核心是提出的密集弱注意力模块。它弥补了弱注意力的缺点,仅需少量额外参数,就能提供不弱于强注意力的先验信息。结果 相同的实验环境下,提出的模型在5个数据集上取得了总体上更好的检测效果。同时,提出的方法将参数量控制在69.5 MB,检测速度达到了实时32帧/s。实验结果表明,与使用强注意力的检测方法相比,提出的密集弱注意力模块使得检测模型的泛化能力更好。结论 本文目标是使用弱注意力机制来提高检测效能,为此设计了兼顾效率和风险的弱注意力模块。弱注意力机制可以提高解码特征的效率,从而压缩模型大小和加快检测速度,并在现有测试集上体现出更好的泛化能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号