首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
介绍了基片集成波导技术和ICP深刻蚀微机械通孔阵列的硅基MEMS谐振器,通孔阵列和地平面形成不辐射介质波导,采用CPW电流探针与谐振腔进行信号耦合,在单层硅片上实现了平面电路与三维硅填充谐振腔的信号传输,得到低成本高性能可与平面电路集成的MEMS谐振器.谐振器工作于主模TE101模式,在片测试的Q值大于180,谐振频率21 GHz,与仿真结果吻合,芯片尺寸为4.7 mm×4.6 mm×0.5 mm.  相似文献   

2.
MEMS谐振器采用阵列耦合设计可以降低运动电阻、提高功率处理能力等,但是阵列耦合谐振器的性能对于耦合梁结构特性非常敏感,据此分析工艺误差造成的耦合梁形状变化对圆盘阵列耦合谐振器滤波性能的影响.对耦合梁不同程度倾斜下的谐振滤波器结构和性能参数进行理论分析,并采用有限元仿真软件ANSYS进行模拟仿真.结果表明当耦合梁分别发生0.1°、0.2°、0.5°倾斜时,滤波器中心频率分别下偏10×10-6、24×10-6、51×10-6.当倾斜角达到0.5°时,分数带宽偏差将达到5.6%.提出了一种半高耦合梁的圆盘阵列谐振滤波器,其滤波器性能稳定性要4×优于常规型圆盘耦合谐振滤波器.  相似文献   

3.
利用两种新型谐振器设计多层毫米波低温共烧陶瓷(LTCC)滤波器,其一是双环谐振器,另一是分形缺陷梯形谐振器.使用这两种谐振器设计的LTCC滤波器都采用带线结构,整个体积为5.5 inm×2.5mm x0.6mm,利用全波分析软件优化设计并加工出两种结构的滤波器,双环谐振结构滤波器的中心频率为31.5GHz,相对带宽为10.0%,带内插入损耗和回波损耗分别为1.2,11.4dB.分形梯形谐振腔滤波器具有较宽的频带,带宽为30.1-39.20GHz,相对带宽为26.3%.带内插入损耗小于1.9dB,回波损耗小于11.2dB.测试结果与仿真分析数据基本一致,说明方案可行有效,所设计滤波器可以满足毫米波通讯系统的要求.  相似文献   

4.
介绍了一种双层SIW带通滤波器,两层之间采用交指结构实现谐振,输入输出采用共面波导形式.所设计的毫米波滤波器芯片尺寸仅有7 mm×3.5 mm×0.8 mm,使用三维高频电磁仿真软件对该结构进行仿真和优化,结果表明滤波性能符合设计要求:中心频率10.6 GHz、带宽2.5 GHz、带内插损2 dB.最后阐明了基于MEMS技术的该滤波器的工艺制作流程.  相似文献   

5.
《微型机与应用》2016,(11):28-30
提出了一种基于LTCC技术的L波段四级分布带通滤波器的实现方法。该带通滤波器由四级谐振器组成,每级谐振器由三层平行放置的带状线排列而成,其中Z形带状线起到形成传输零点的作用,从而实现良好的带外阻带衰减。通过ADS电路仿真以及HFSS软件三维建模设计,滤波器的加工测试结果与电磁仿真结果相匹配,四级带通滤波器的中心频率为1.46 GHz,带宽为250 MHz,通带范围内插入损耗均优于2.56 d B,在0 GHz~1.22 GHz频率的带外衰减优于36 d B,尺寸仅为4.5 mm×3.2mm×1.5 mm。该滤波器频段属于L波段,设计中采用了带状线分布式结构来实现滤波器的小型化。  相似文献   

6.
从设计指标出发,采用基片集成波导结构,研究并设计了一种小型化的滤波器。通过采用四分之一基片集成波导谐振器,实现了整体电路的小型化。通过引入微带谐振器,在频带高端引入一个传输零点,提高了滤波器的选择性。滤波器的中心频率设置在3.6GHz,通带的带宽为400MHz。  相似文献   

7.
设计了一种可用于器件级真空封装的三明治电容式MEMS加速度传感器.该传感器被设计为四层硅结构,其中上下两层为固定电极,中间两层为硅-硅直接键合的双面梁-质量块结构的可动电极.利用自停止腐蚀工艺在中间质量块键合层上腐蚀出2个深入腔内的V型抽气槽,使得MEMS器件在后续的封装中能够实现内部真空.为防止V型抽气槽在划片中被水或硅渣堵塞,采用双面划片工艺.划片后,器件的总尺寸为6.8mm ×5.6mm ×1.72 mm,其中,敏感质量块尺寸为3.2mm×3.2mm ×0.86mm,检测电容间隙2.1 μm.对器件级真空封装后的MEMS加速度传感器进行了初步测试,结果表明:制作的传感器的谐振频率为861 Hz,品质因数Q为76,灵敏度为1.53 V/gn,C-V特性正常,氦气细漏<1×10-9 atm-cm3/s,粗漏无气泡.  相似文献   

8.
一种新型压电式双向无阀微泵的研制   总被引:4,自引:1,他引:4  
采用氧化、光刻、腐蚀、键合等MEMS技术,研制了一种硅基压电式双向无阀微泵,泵的外形尺寸为30×14×3 mm3,泵腔体体积约10 mm3.通过大量试验测试,得到了泵压、流量与工作频率、波形、电压幅值之间的关系.当工作电压为110 V、频率为40 Hz时,微泵的正向最大泵压为120 mm水柱,频率为50-90 Hz时,最大流量70μl/min;当频率为35 Hz时,微泵的反向最大泵压为70 mm水柱,最大流量56μl/min.  相似文献   

9.
林丹艳  周希朗 《计算机仿真》2009,26(12):325-328,346
首次提出一种复合左右手传输线零阶谐振器及互补谐振环的新型带通滤波器.设计方法利用左右手复合传输线的独有特性,即零阶谐振器中心频率与谐振器长度无关,能在特定非零频率上得到无限波长的特点,来构造环形滤波器,并且地板蚀刻了长方形互补谐振环结构.设计过程中使用了AnsoftHFSS软件进行全波仿真,经过多次仿真,通过调节参数大小优化设计,最终结果得到中心频率为1.85GHz、带宽为0.1GHz的新型带通滤波器.在达到同样效果的前提下,减小尺寸,单个谐振器与传统相比体积减少了近80%,长方形CSBR还提高了传输特性.上述结构的实现对于左手材料在微波器件中的发展有一定的促进作用,进一步扩大了左手材料的应用范围.  相似文献   

10.
提出了一种基于LC串联单元的三模混合集成小型化滤波器电路拓扑。该电路拓扑具有对称性,主体由4个LC串联单元所构成的“星型”结构组成,能够通过对其并联于地的LC串联单元中元件参数的调节实现对滤波器双零点的自由调节。基于奇偶模分析方法,给出了所提出滤波器拓扑的综合设计方法,并采用基于商业化硅基表贴电容的低成本混合集成技术研制一款具有明显小型化特性的三模多零点带通滤波器。所研制的滤波器仿真与测试结果吻合良好,其中心频率为2.6 GHz,3 dB带宽为1.34 GHz,插入损耗典型值为1.6 dB,能够在4~12 GHz的频带范围内实现30 dB的抑制能力,其面积尺寸为3.2 mm×1.9 mm(0.03λ0×0.02λ0)。  相似文献   

11.
Substrate integrated waveguide (SIW) is a new structure for microwave transmission. In this paper, a planar folded sixth‐order SIW filter is designed with aggressive space mapping (ASM) algorithm. Its center frequency is 22 GHz, 3 dB bandwidth 1 GHz, and in‐band return loss 22 dB. The filter satisfies design specifications after four iterations, and is fabricated using micro‐electro‐mechanical systems (MEMS) technology with a chip size of 7.5 mm × 8.5 mm × 0.4 mm. Measurement results show that the center frequency of the filter measures at 22.2 GHz, 3 dB bandwidth at 1 GHz, insertion loss at 3.57 dB, return loss at 22 dB and out‐of‐band rejection at 40 dB.  相似文献   

12.
提出一种新型的基于基片集成波导和消失模谐振腔的压力传感结构。设计了圆形空腔,当施加外界压力时,圆形空腔发生形变从而使谐振腔谐振频率变化。采用共面波导线对谐振腔进行耦合馈电并将频率信号传输出来。通过读取传感器的回波损耗参数( S11)来表征压力与频率的关系。利用高频仿真软件HFSS对谐振腔进行了仿真设计和优化,设计尺寸为30 mm×30 mm×1.93 mm,与传统谐振腔相比体积明显减小。传感器基底为Rogers 4003C板材,采用PCB技术进行加工。搭建压力测试平台对传感器进行测试,结果表明在0~3 N的压力范围内变化100 MHz,绝对灵敏度为25 MHz/N。仿真和实测结果比较吻合,验证了所设计压力结构的有效性。  相似文献   

13.
A high‐isolation dual‐polarized quad‐patch antenna fed by stacked substrate integrated waveguide (SIW) that is suitable for millimeter‐wave band is proposed in this paper. The antenna consists of a quad‐patch radiator, a two‐layer SIW feeding structure and two feeding ports for horizontal and vertical polarization. The two‐layer stacked SIW feeding structure achieves the high isolation between the two feeding ports (|S21| ≤ ?45 dB). Based on the proposed element, a 1 × 4 antenna array with a simple series‐fed network is also designed and investigated. A prototype working at the frequency band from 38 to 40 GHz is fabricated and tested. The results indicate that the proposed antenna has good radiation performance at 38 GHz that covers future 5G applications.  相似文献   

14.
In this article, a compact bandpass filter with a pair of transmission zeros exploiting capacitive loaded cavities is presented. The proposed filter structure is mainly composed of coplanar waveguide (CPW) feeding structures and four substrate integrated waveguide (SIW) resonators. The size of the filter has been greatly reduced due to the capacitive loaded circle metallic septum and the vertical coupling of stacked cavities in three dimensional structures by low temperature co‐fired ceramic technology. The filter not only achieves the advantages of high‐selectivity, a much wider upper stopband bandwidth, but also realizes a miniaturized volume of 3.35 × 2.10 × 0.66 mm3. The simulated and measured results show the bandpass filter achieves a center frequency of 28 GHz with 3 dB fractional bandwidth of 8%. The filter is suitable for application in 5G wireless communication.  相似文献   

15.
In this article, a wideband bandpass filter (BPF) is designed using the comb slotted substrate integrated waveguide (SIW) cavities. The comb‐shaped slots engraved on the SIW cavity are used to constitute a novel multiple‐mode resonator (MMR) that accomplishes a wide passband of operation. Further, a Jerusalem cross defected ground structure (DGS) is introduced to miniaturize it and enhance filter performance in the pass band and stop band. The filter is fabricated on RT/Duroid 5880 having dielectric constant 2.2 and tested to prove the validity of design. The filter achieves 3 dB fractional bandwidth of 48%, return loss above 14 dB and insertion loss of 1.1 dB in the passband. Also, the proposed filter has steep selectivity and wide upper stopband with 25 dB attenuation from 16.7 to 24 GHz.  相似文献   

16.
This work presents an efficient method for the design of substrate integrated waveguide (SIW) filters. The proposed design approach is based on a combined use of equivalent circuit model of a filter and a space mapping technique. A reduced number of full‐wave evaluations are needed, leading to a reduced optimization time. A novel SIW filter with improved stop‐band characteristic using cross‐coupling has been proposed. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:360–366, 2014.  相似文献   

17.
A miniaturized substrate integrated waveguide (SIW) bandpass filter using fractal open complementary split‐ring resonators (FOCSRRs) unit‐cell is proposed. The proposed structure is realized by etching the proposed FOCSRR unit‐cells on the top metal surface of the SIW structure. The working principle of the proposed filter is based on the evanescent‐mode propagation. The proposed FOCSRRs behave as an electric dipoles in condition of the appropriate stimulation, which are able to generate a forward‐wave passband region below the cutoff frequency of the waveguide structure. Since, the electrical size of the proposed FOCSRRs unit‐cell is larger than the conventional OCSRRs unit‐cell; therefore, the FOCSRR unit‐cell is a good candidate to miniaturize the SIW structure. The proposed filter represents high selectivity and compact size because of the utilization of the sub‐wavelength resonators. The introduced filter is simulated by a 3D electromagnetic simulator. In order to validate the ability of the proposed topology in size reduction, 1‐ and 2‐stage of the proposed filters have been fabricated based on the standard printed circuit board process. The measured S‐parameters of the fabricated filters are in a good agreement with the simulated ones. The proposed SIW filters have many advantages in term of compact size, low insertion loss, high return loss, easy fabrication and integration with other circuits. It is the first time that the FOCSRR unit‐cells were combined with the SIW structure for miniaturization of this structure. Furthermore, a wide upper‐stopband with the attenuation >20 dB in the range of 3–8 GHz is achieved. The results show that, a miniaturization factor about 75.5% has been obtained.  相似文献   

18.
A quarter‐mode (QM) substrate‐integrated‐waveguide (SIW) cavity is designed as a dual‐functional component. By etching three slots, four sub‐cavities are formed and then two of them with the same size are individually fed by a coaxial port. Three resonating frequencies are excited in the single QM SIW cavity. One of them can radiate cavity energy input by these ports into free space, implying a two‐element multiple‐input‐multiple‐output (MIMO) antenna, whereas the other two can transmit energy from one port to the other port, indicating a second‐order bandpass filter. Moreover, antenna isolation and filter bandwidth can be adjusted to a certain degree. A prototype with the overall size of 0.40λ0 × 0.40λ0 × 0.02λ0 has been fabricated. The integrated bandpass filter demonstrates the measured center frequency of 3.8 GHz and operating bandwidth of 32 MHz while the integrated MIMO antenna exhibits the frequency of 3.4 GHz, bandwidth of 67 MHz, port isolation of 18.0 dB, radiation gain of 4.0 dBi, and envelope correlation coefficient of 0.25.  相似文献   

19.
In this article, a filter size reduction of 46% is achieved by reducing a substrate‐integrated waveguide (SIW)‐loaded evanescent‐mode bandpass filter to a half‐mode SIW (HMSIW) structure. SIW and HMSIW filters with 1.7 GHz center frequency and 0.2 GHz bandwidth were designed and implemented. Simulation and measurements of the proposed filters utilizing combline resonators have served to prove the underlying principles. SIW and HMSIW filter cavity areas are 11.4 and 6.2 cm2, respectively. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2013.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号