首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
H filter design for nonlinear systems with time-delay via a T-S fuzzy model approach is investigated based on a piecewise analysis method. Two cases of time-varying delays are fully considered: one is the time-varying delay being continuous uniformly bounded while the other is the time-varying delay being differentiable uniformly bounded with delay-derivative bounded by a constant. Based on a piecewise analysis method, the variation interval of the time delay is first divided into several subintervals, then the convexity property of the matrix inequality and the free weighting matrix method are fully used in this article. Some novel delay-dependent H filtering criteria are expressed as a set of linear matrix inequalities, which can lead to much less conservative analysis results. Finally, a numerical example is given to illustrate that the results in this article are more effective and less conservative than some existing ones.  相似文献   

2.
In this note, the differential game and dissipation inequality are applied to the disturbance attenuation or H-control for linear systems with delayed state. Firstly, a simple sufficient condition on the existence of a γ-suboptimal H state feedback controller is given, which is independent of delay, and an observer-based dynamic output feedback solution is presented in terms of Riccati inequalities (or Riccati equations). Secondly, a sufficient condition on the existence of a delay-dependent state feedback is presented and the criterion is presented by a matrix inequality which can be solved by numerical methods.  相似文献   

3.
This article considers the problem of H filter design for stochastic systems with time-varying delay. The time delay is assumed to be of interval type. Attention is focused on the design of delay-dependent filters that guarantee the asymptotic stability in mean square and a prescribed noise attenuation level in an H sense for the filtering error dynamics. The delay-dependent H filter design scheme is proposed in terms of a linear matrix inequality. A numerical example is used to illustrate the effectiveness of the proposed approach.  相似文献   

4.
The problem of H filtering of stationary discrete-time linear systems with stochastic uncertainties in the state space matrices is addressed, where the uncertainties are modeled as white noise. The relevant cost function is the expected value, with respect to the uncertain parameters, of the standard H performance. A previously developed stochastic bounded real lemma is applied that results in a modified Riccati inequality. This inequality is expressed in a linear matrix inequality form whose solution provides the filter parameters. The method proposed is applied also to the case where, in addition to the stochastic uncertainty, other deterministic parameters of the system are not perfectly known and are assumed to lie in a given polytope. The problem of mixed H2/H filtering for the above system is also treated. The theory developed is demonstrated by a simple tracking example.  相似文献   

5.
In this paper, sampled-data H filtering problem is considered for Markovian jump singularly perturbed systems with time-varying delay and missing measurements. The sampled-data system is represented by a time-delay system, and the missing measurement phenomenon is described by an independent Bernoulli random process. By constructing an ?-dependent stochastic Lyapunov–Krasovskii functional, delay-dependent sufficient conditions are derived such that the filter error system satisfies the prescribed H performance for all possible missing measurements. Then, an H filter design method is proposed in terms of linear matrix inequalities. Finally, numerical examples are given to illustrate the feasibility and advantages of the obtained results.  相似文献   

6.
This paper considers the problem of robust H control for uncertain discrete systems with time-varying delays. The system under consideration is subject to time-varying norm-bounded parameter uncertainties in both the state and measured output matrices. Attention is focused on the design of a full-order exponential stable dynamic output feedback controller which guarantees the exponential stability of the closed-loop system and reduces the effect of the disturbance input on the controlled output to a prescribed level for all admissible uncertainties. In terms of a linear matrix inequality (LMI), a sufficient condition for the solvability of this problem is presented, which is dependent on the size of the delay. When this LMI is feasible, the explicit expression of the desired output feedback controller is also given. Finally, an example is provided to demonstrate the effectiveness of the proposed approach.  相似文献   

7.
This article investigates the problems of H analysis for Markovian jump stochastic systems with both nonlinear disturbance and time-varying delays. By virtue of the delay partition approach, the improved delay-dependent stochastic stability and bounded real lemma (BRL) for Markovian jump stochastic systems are obtained in terms of linear matrix inequalities (LMIs). The proposed approach involves neither free weighting matrices nor any model transformation, and it is shown that the new criteria have the capability of providing less conservative results than the state-of-the-art. Two numerical simulations are conducted to demonstrate the effectiveness of the proposed method in comparison with existing methods.  相似文献   

8.
9.
吴争光  苏宏业  褚健 《自动化学报》2009,35(8):1101-1106
讨论广义时滞系统的时滞依赖控制问题. 基于线性矩阵不等式(LMI)方法和增广Lyapunov泛函, 给出保证系统正则、无脉冲、稳定且满足性能指标的时滞依赖有界实引理. 在此引理的基础上, 给出基于严格LMI的状态反馈控制器存在的时滞依赖条件. 同时给出所需状态反馈控制器的明确表示. 数值例子表明本文的结果改进了已有结论的保守性.  相似文献   

10.
This paper considers robust stochastic stability, stabilization and H control problems for a class of jump linear systems with time delays. By using some zero equations, neither model transformation nor bounding for cross terms is required to obtain the delay-dependent results, which are given in terms of linear matrix inequalities (LMIs). Maximum sizes of time delays are also studied for system stability. Furthermore, solvability conditions and corresponding H control laws are given which provide robust stabilization with a prescribed H disturbance attenuation level. Numerical examples show that the proposed methods are much less conservative than existing results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号